Zn segregation at precipitate/matrix interface in Mg–Sn–Zn alloys

Chaoqiang Liu, Houwen Chen, Jian Feng Nie

Research output: Chapter in Book/Report/Conference proceedingConference PaperOther

3 Citations (Scopus)


Magnesium-tin based alloys have received considerable attention in the past 15 years for developing high strength alloys. Mg–Sn binary alloys are precipitation hardenable, but their age-hardening response is moderate. Additions of Zn can significantly improve the age-hardening response of binary Mg–Sn alloys by refining the distribution of Mg2Sn precipitates. To understand the role of Zn in the precipitation process, Mg2Sn precipitates with different morphologies and orientations in under-, peak- and over-aged samples of a Mg–9.8Sn–1.2Zn (wt%) alloy are characterized by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and STEM X-ray mapping. It is found that Zn atoms always segregate to the precipitate-matrix interface, irrespective of the interfacial structures and orientation relationships of the Mg2Sn precipitates. This finding provides an insightful clue to the understanding of the enhanced nucleation and thermal stability of Mg2Sn precipitates in the Mg–Sn–Zn alloys.

Original languageEnglish
Title of host publicationMagnesium Technology 2017
EditorsNeale R. Neelameggham, Alok Singh, Kiran N. Solanki, Dmytro Orlov
Number of pages7
ISBN (Print)9783319523910
Publication statusPublished - 1 Jan 2017
EventMagnesium Technology Symposium 2017 - San Diego, United States of America
Duration: 26 Feb 20172 Mar 2017
https://link.springer.com/book/10.1007/978-3-319-52392-7 (Proceedings)

Publication series

NameMinerals, Metals and Materials Series
VolumePart F8
ISSN (Print)2367-1181
ISSN (Electronic)2367-1696


ConferenceMagnesium Technology Symposium 2017
CountryUnited States of America
CitySan Diego
Internet address


  • Interface segregation
  • Magnesium alloys
  • Precipitates

Cite this