TY - JOUR
T1 - Wearable microneedle array-based sensor for transdermal monitoring of pH levels in interstitial fluid
AU - Dervisevic, Muamer
AU - Dervisevic, Esma
AU - Esser, Lars
AU - Easton, Christopher D.
AU - Cadarso, Victor J.
AU - Voelcker, Nicolas H.
N1 - Funding Information:
This work was performed in part at the Melbourne Centre for Nanofabrication (MCN) in the Victorian Node of the Australian National Fabrication Facility (ANFF). Funding from the Australian Research Council for IC190100026 is kindly acknowledged.
Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2023/2/15
Y1 - 2023/2/15
N2 - Microneedle-based wearable sensors offer an alternative approach to traditional invasive blood-based health monitoring and disease diagnostics techniques. Instead of blood, microneedle-based sensors target the skin interstitial fluid (ISF), in which the biomarker type and concentration profile resemble the one found in the blood. However, unlike blood, interstitial fluid does not have the same pH-buffering capacity causing deviation of pH levels from the physiological range. Information about the skin ISF pH levels can be used as a biomarker for a wide range of pathophysiological conditions and as a marker for the calibration of a wearable sensor. The ISF pH can significantly affect the detection accuracy of other biomarkers as it influences enzyme activity, aptamer affinity, and antibody-antigen interaction. Herein, we report the fabrication of a high-density polymeric microneedle array-based (PMNA) sensing patch and its optimization for the potentiometric transdermal monitoring of pH levels in ISF. The wearable sensor utilizes a polyaniline-coated PMNA having a density of ∼10,000 microneedles per cm2, containing individual microneedles with a height of ∼250 μm, and a tip diameter of ∼2 μm. To prevent interference from other body fluids like sweat, an insulating layer is deposited at the base of the PMNA. The wearable pH sensor operates from pH 4.0 to 8.6 with a sensitivity of 62.9 mV per pH unit and an accuracy of ±0.036 pH units. Furthermore, testing on a mouse demonstrates the ability of the PMNA to provide a real-time reading of the transdermal pH values. This microneedle-based system will significantly contribute to advancing transdermal wearable sensors technology, simplifying the fabrication process, and improving the cost-effectiveness of such devices.
AB - Microneedle-based wearable sensors offer an alternative approach to traditional invasive blood-based health monitoring and disease diagnostics techniques. Instead of blood, microneedle-based sensors target the skin interstitial fluid (ISF), in which the biomarker type and concentration profile resemble the one found in the blood. However, unlike blood, interstitial fluid does not have the same pH-buffering capacity causing deviation of pH levels from the physiological range. Information about the skin ISF pH levels can be used as a biomarker for a wide range of pathophysiological conditions and as a marker for the calibration of a wearable sensor. The ISF pH can significantly affect the detection accuracy of other biomarkers as it influences enzyme activity, aptamer affinity, and antibody-antigen interaction. Herein, we report the fabrication of a high-density polymeric microneedle array-based (PMNA) sensing patch and its optimization for the potentiometric transdermal monitoring of pH levels in ISF. The wearable sensor utilizes a polyaniline-coated PMNA having a density of ∼10,000 microneedles per cm2, containing individual microneedles with a height of ∼250 μm, and a tip diameter of ∼2 μm. To prevent interference from other body fluids like sweat, an insulating layer is deposited at the base of the PMNA. The wearable pH sensor operates from pH 4.0 to 8.6 with a sensitivity of 62.9 mV per pH unit and an accuracy of ±0.036 pH units. Furthermore, testing on a mouse demonstrates the ability of the PMNA to provide a real-time reading of the transdermal pH values. This microneedle-based system will significantly contribute to advancing transdermal wearable sensors technology, simplifying the fabrication process, and improving the cost-effectiveness of such devices.
KW - Electrochemical sensors
KW - Interstitial fluid
KW - Microfabrication
KW - pH sensor
KW - Polyaniline
KW - Polymeric microneedle arrays
KW - Potentiometry
KW - Transdermal sensing.
UR - http://www.scopus.com/inward/record.url?scp=85143328736&partnerID=8YFLogxK
U2 - 10.1016/j.bios.2022.114955
DO - 10.1016/j.bios.2022.114955
M3 - Article
C2 - 36462430
AN - SCOPUS:85143328736
SN - 0956-5663
VL - 222
JO - Biosensors and Bioelectronics
JF - Biosensors and Bioelectronics
M1 - 114955
ER -