Visualization and quantification of IgG antibody adsorbed at the cellulose–liquid interface

Vikram Singh Raghuwanshi, Jielong Su, Christopher J. Garvey, Stephen A. Holt, Peter J. Holden, Warren J. Batchelor, Gil Garnier

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Quantification of adsorbed biomolecules (enzymes, proteins) at the cellulose interface is a major challenge in developing eco-friendly biodiagnostics. Here, a novel methodology is developed to visualize and quantify the adsorption of antibody from solution to the cellulose–liquid interface. The concept is to deuterate cellulose by replacing all nonexchangeable hydrogens from the glucose rings with deuterium in order to enhance the scattering contrast between the cellulose film surface and adsorbed antibody molecules. Deuterated cellulose (DC) was obtained from bacterial (Gluconacetobacter xylinus strain) cellulose, which was grown in heavy water (D2O) media with a deuterated glycerol as a carbon source. For comparison, hydrogenated cellulose (HC) was obtained from cellulose acetate. Both HC and DC thin films were prepared on silicon substrate by spin coating. X-ray reflectivity (XR) shows the formation of homogeneous and smooth film. Neutron reflectivity (NR) at the liquid/film interface reveals swelling of the cellulose film by a factor of 2–3× its initial thickness. An Immunoglobulin G (IgG), used as a model antibody, was adsorbed at the liquid–solid interface of cellulose (HC) and deuterated cellulose (DC) films under equilibrium and surface saturation conditions. NR measurements of the IgG antibody layer adsorbed onto the DC film can clearly be visualized, in sharp contrast in comparison to the HC film. The average thickness of the IgG adsorbed layer onto cellulose films is 127 ± 5 Å and a partial monolayer is formed. Visualization and quantification of adsorbed IgG is shown by large difference in scattering length density (SLD) between DC (7.1 × 10–6 Å–2) and IgG (4.1 × 10–6 Å–2) in D2O, which enhanced the scattering contrast in NR. Quartz crystal measurements (QCM-D) were used as a complementary method to NR to quantify the adsorbed IgG over the cellulose interface.
Original languageEnglish
Pages (from-to)2439-2445
Number of pages7
JournalBiomacromolecules
Volume18
Issue number8
DOIs
Publication statusPublished - 2017

Cite this

Raghuwanshi, Vikram Singh ; Su, Jielong ; Garvey, Christopher J. ; Holt, Stephen A. ; Holden, Peter J. ; Batchelor, Warren J. ; Garnier, Gil. / Visualization and quantification of IgG antibody adsorbed at the cellulose–liquid interface. In: Biomacromolecules. 2017 ; Vol. 18, No. 8. pp. 2439-2445.
@article{5c5a034b47354a74b938b641b61480e6,
title = "Visualization and quantification of IgG antibody adsorbed at the cellulose–liquid interface",
abstract = "Quantification of adsorbed biomolecules (enzymes, proteins) at the cellulose interface is a major challenge in developing eco-friendly biodiagnostics. Here, a novel methodology is developed to visualize and quantify the adsorption of antibody from solution to the cellulose–liquid interface. The concept is to deuterate cellulose by replacing all nonexchangeable hydrogens from the glucose rings with deuterium in order to enhance the scattering contrast between the cellulose film surface and adsorbed antibody molecules. Deuterated cellulose (DC) was obtained from bacterial (Gluconacetobacter xylinus strain) cellulose, which was grown in heavy water (D2O) media with a deuterated glycerol as a carbon source. For comparison, hydrogenated cellulose (HC) was obtained from cellulose acetate. Both HC and DC thin films were prepared on silicon substrate by spin coating. X-ray reflectivity (XR) shows the formation of homogeneous and smooth film. Neutron reflectivity (NR) at the liquid/film interface reveals swelling of the cellulose film by a factor of 2–3× its initial thickness. An Immunoglobulin G (IgG), used as a model antibody, was adsorbed at the liquid–solid interface of cellulose (HC) and deuterated cellulose (DC) films under equilibrium and surface saturation conditions. NR measurements of the IgG antibody layer adsorbed onto the DC film can clearly be visualized, in sharp contrast in comparison to the HC film. The average thickness of the IgG adsorbed layer onto cellulose films is 127 ± 5 {\AA} and a partial monolayer is formed. Visualization and quantification of adsorbed IgG is shown by large difference in scattering length density (SLD) between DC (7.1 × 10–6 {\AA}–2) and IgG (4.1 × 10–6 {\AA}–2) in D2O, which enhanced the scattering contrast in NR. Quartz crystal measurements (QCM-D) were used as a complementary method to NR to quantify the adsorbed IgG over the cellulose interface.",
author = "Raghuwanshi, {Vikram Singh} and Jielong Su and Garvey, {Christopher J.} and Holt, {Stephen A.} and Holden, {Peter J.} and Batchelor, {Warren J.} and Gil Garnier",
year = "2017",
doi = "10.1021/acs.biomac.7b00593",
language = "English",
volume = "18",
pages = "2439--2445",
journal = "Biomacromolecules",
issn = "1525-7797",
publisher = "American Chemical Society (ACS)",
number = "8",

}

Visualization and quantification of IgG antibody adsorbed at the cellulose–liquid interface. / Raghuwanshi, Vikram Singh; Su, Jielong; Garvey, Christopher J.; Holt, Stephen A.; Holden, Peter J.; Batchelor, Warren J.; Garnier, Gil.

In: Biomacromolecules, Vol. 18, No. 8, 2017, p. 2439-2445.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Visualization and quantification of IgG antibody adsorbed at the cellulose–liquid interface

AU - Raghuwanshi, Vikram Singh

AU - Su, Jielong

AU - Garvey, Christopher J.

AU - Holt, Stephen A.

AU - Holden, Peter J.

AU - Batchelor, Warren J.

AU - Garnier, Gil

PY - 2017

Y1 - 2017

N2 - Quantification of adsorbed biomolecules (enzymes, proteins) at the cellulose interface is a major challenge in developing eco-friendly biodiagnostics. Here, a novel methodology is developed to visualize and quantify the adsorption of antibody from solution to the cellulose–liquid interface. The concept is to deuterate cellulose by replacing all nonexchangeable hydrogens from the glucose rings with deuterium in order to enhance the scattering contrast between the cellulose film surface and adsorbed antibody molecules. Deuterated cellulose (DC) was obtained from bacterial (Gluconacetobacter xylinus strain) cellulose, which was grown in heavy water (D2O) media with a deuterated glycerol as a carbon source. For comparison, hydrogenated cellulose (HC) was obtained from cellulose acetate. Both HC and DC thin films were prepared on silicon substrate by spin coating. X-ray reflectivity (XR) shows the formation of homogeneous and smooth film. Neutron reflectivity (NR) at the liquid/film interface reveals swelling of the cellulose film by a factor of 2–3× its initial thickness. An Immunoglobulin G (IgG), used as a model antibody, was adsorbed at the liquid–solid interface of cellulose (HC) and deuterated cellulose (DC) films under equilibrium and surface saturation conditions. NR measurements of the IgG antibody layer adsorbed onto the DC film can clearly be visualized, in sharp contrast in comparison to the HC film. The average thickness of the IgG adsorbed layer onto cellulose films is 127 ± 5 Å and a partial monolayer is formed. Visualization and quantification of adsorbed IgG is shown by large difference in scattering length density (SLD) between DC (7.1 × 10–6 Å–2) and IgG (4.1 × 10–6 Å–2) in D2O, which enhanced the scattering contrast in NR. Quartz crystal measurements (QCM-D) were used as a complementary method to NR to quantify the adsorbed IgG over the cellulose interface.

AB - Quantification of adsorbed biomolecules (enzymes, proteins) at the cellulose interface is a major challenge in developing eco-friendly biodiagnostics. Here, a novel methodology is developed to visualize and quantify the adsorption of antibody from solution to the cellulose–liquid interface. The concept is to deuterate cellulose by replacing all nonexchangeable hydrogens from the glucose rings with deuterium in order to enhance the scattering contrast between the cellulose film surface and adsorbed antibody molecules. Deuterated cellulose (DC) was obtained from bacterial (Gluconacetobacter xylinus strain) cellulose, which was grown in heavy water (D2O) media with a deuterated glycerol as a carbon source. For comparison, hydrogenated cellulose (HC) was obtained from cellulose acetate. Both HC and DC thin films were prepared on silicon substrate by spin coating. X-ray reflectivity (XR) shows the formation of homogeneous and smooth film. Neutron reflectivity (NR) at the liquid/film interface reveals swelling of the cellulose film by a factor of 2–3× its initial thickness. An Immunoglobulin G (IgG), used as a model antibody, was adsorbed at the liquid–solid interface of cellulose (HC) and deuterated cellulose (DC) films under equilibrium and surface saturation conditions. NR measurements of the IgG antibody layer adsorbed onto the DC film can clearly be visualized, in sharp contrast in comparison to the HC film. The average thickness of the IgG adsorbed layer onto cellulose films is 127 ± 5 Å and a partial monolayer is formed. Visualization and quantification of adsorbed IgG is shown by large difference in scattering length density (SLD) between DC (7.1 × 10–6 Å–2) and IgG (4.1 × 10–6 Å–2) in D2O, which enhanced the scattering contrast in NR. Quartz crystal measurements (QCM-D) were used as a complementary method to NR to quantify the adsorbed IgG over the cellulose interface.

U2 - 10.1021/acs.biomac.7b00593

DO - 10.1021/acs.biomac.7b00593

M3 - Article

VL - 18

SP - 2439

EP - 2445

JO - Biomacromolecules

JF - Biomacromolecules

SN - 1525-7797

IS - 8

ER -