TY - JOUR

T1 - Viscous effects in two-layer, unidirectional hydraulic flow

AU - Singh, Martin S

AU - Hogg, Andrew McC

PY - 2010/2/10

Y1 - 2010/2/10

N2 - Hydraulic equations are derived for a stratified (two-layer) flow in which the horizontal velocity varies continuously in the vertical. Viscosity is included in the governing equations, and the effect of friction in hydraulically controlled flows is examined. The analysis yields Froude numbers which depend upon the integrated inverse square of velocity but reduce to the original layered Froude numbers when velocity is constant with depth. The Froude numbers reveal a critical condition for hydraulic control, which equates to the arrest of internal gravity waves. Solutions are presented for the case of unidirectional flow through a lateral constriction, both with and without bottom drag. In the free-slip lower boundary case, viscosity transports momentum from the faster to the slower layer, thereby shifting the control point downstream and reducing the flux through the constriction. However, while the velocity shear at the interface between the two layers is reduced, the top-to-bottom velocity difference of the controlled solution is increased for larger values of viscosity. This counter-intuitive result is due to the restrictions placed on the flow at the hydraulic control point. When bottom drag is included in the model, the total flux may increase, in some cases exceeding that of the inviscid solution.

AB - Hydraulic equations are derived for a stratified (two-layer) flow in which the horizontal velocity varies continuously in the vertical. Viscosity is included in the governing equations, and the effect of friction in hydraulically controlled flows is examined. The analysis yields Froude numbers which depend upon the integrated inverse square of velocity but reduce to the original layered Froude numbers when velocity is constant with depth. The Froude numbers reveal a critical condition for hydraulic control, which equates to the arrest of internal gravity waves. Solutions are presented for the case of unidirectional flow through a lateral constriction, both with and without bottom drag. In the free-slip lower boundary case, viscosity transports momentum from the faster to the slower layer, thereby shifting the control point downstream and reducing the flux through the constriction. However, while the velocity shear at the interface between the two layers is reduced, the top-to-bottom velocity difference of the controlled solution is increased for larger values of viscosity. This counter-intuitive result is due to the restrictions placed on the flow at the hydraulic control point. When bottom drag is included in the model, the total flux may increase, in some cases exceeding that of the inviscid solution.

UR - http://www.scopus.com/inward/record.url?scp=77952359162&partnerID=8YFLogxK

U2 - 10.1017/S0022112009992448

DO - 10.1017/S0022112009992448

M3 - Article

AN - SCOPUS:77952359162

VL - 644

SP - 371

EP - 394

JO - Journal of Fluid Mechanics

JF - Journal of Fluid Mechanics

SN - 0022-1120

ER -