Virulence studies on chromosomal α‐toxin and Θ‐toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of α‐toxin in Clostridium perfringens‐mediated gas gangrene

Miilena M. Awad, Amy E. Bryant, Dennis L. Stevens, Julian I. Rood

Research output: Contribution to journalArticleResearchpeer-review

243 Citations (Scopus)


The pathogenesis of clostridial myonecrosis, or gas gangrene, involves the growth of the anaerobic bacterium Clostridium perfringens in the infected tissues and the elaboration of numerous extracellular toxins and enzymes. The precise role of each of these toxins in tissue invasion and necrosis has not been determined. To enable genetic approaches to be used to study C. perfringens pathogenesis we developed an allelic exchange method which involved the transformation of C. perfringens cells with a suicide plasmid carrying a gene insertionally inactivated with an erythromycin‐resistance determinant. The frequency with which double reciprocal crossover events were observed was increased to a workable level by increasing the amount of homologous DNA located on either side of the inactivated gene. Allelic exchange was used to isolate mutations in the‘chromosomal pfoA gene, which encodes an oxygen‐labile haemolysin known as Θ‐toxin or perfringolysin O. and in the chromosomal pic gene, which encodes the α‐toxin or phospholipase C. The resultant mutants failed to produce detectable Θ‐toxin or α‐toxin activity, respectively, and could be complemented by recombinant plasmids that carried the respective wild‐type genes. The resultant strains were virulence tested in a mouse myonecrosis model. The results showed that the pic mutants had demonstrably reduced virulence and therefore provided definitive genetic evidence for the essential role of α‐toxin in gas gangrene or clostridial myonecrosis.

Original languageEnglish
Pages (from-to)191-202
Number of pages12
JournalMolecular Microbiology
Issue number2
Publication statusPublished - 1 Jan 1995

Cite this