Versatile Bioorthogonal Hydrogel Platform by Catalyst-Free Visible Light Initiated Photodimerization of Anthracene

Vinh X. Truong, Fanyi Li, John S. Forsythe

Research output: Contribution to journalArticleResearchpeer-review

39 Citations (Scopus)

Abstract

Recent developments in photochemistry have introduced new methods to prepare hydrogels initiated by nonharmful light which is essential for encapsulation of cells and bioactive components. However, bioorthogonal photoclick reactions generally requires two components for cross-linking and, in many cases, the formation of a reactive intermediate that may cross-react with nucleophiles in biological media. Here we report the utilization of a visible light triggered dimerization of electron-rich anthracene for polymer cross-linking to form bulk hydrogels and microgels. Incorporation of gelatin within the hydrogel enhanced cell attachment and viability after 7 days of culture and spatiotemporal conjugation of a bioactive component using photochemical dimerization of anthracene was demonstrated. This work therefore introduces a simple yet powerful tool for light modulated bioorthogonal polymer cross-linking, which can be utilized in various bioengineering applications.

Original languageEnglish
Pages (from-to)657-662
Number of pages6
JournalACS Macro Letters
Volume6
Issue number7
DOIs
Publication statusPublished - 18 Jul 2017

Equipment

Monash Micro Imaging

Ian Harper (Manager), Stephen Firth (Manager), Alex Fulcher (Operator), Oleks Chernyavskiy (Operator), Margaret Rzeszutek (Other), David Potter (Manager), Volker Hilsenstein (Operator), Juan Nunez-Iglesias (Other), Stephen Cody (Manager), Irena Carmichael (Operator), Betty Kouskousis (Other), Chad Johnson (Operator), Sarah Creed (Manager) & Giulia Ballerin (Operator)

Office of the Vice-Provost (Research and Research Infrastructure)

Facility/equipment: Facility

Cite this