Verbal probabilities: very likely to be somewhat more confusing than numbers

Bonnie C. Wintle, Hannah Fraser, Ben C. Wills, Ann E. Nicholson, Fiona Fidler

Research output: Contribution to journalArticleResearchpeer-review

20 Citations (Scopus)


People interpret verbal expressions of probabilities (e.g. ‘very likely’) in different ways, yet words are commonly preferred to numbers when communicating uncertainty. Simply providing numerical translations alongside reports or text containing verbal probabilities should encourage consistency, but these guidelines are often ignored. In an online experiment with 924 participants, we compared four different formats for presenting verbal probabilities with the numerical guidelines used in the US Intelligence Community Directive (ICD) 203 to see whether any could improve the correspondence between the intended meaning and participants’ interpretation (‘in-context’). This extends previous work in the domain of climate science. The four experimental conditions we tested were: 1. numerical guidelines bracketed in text, e.g. X is very unlikely (05–20%), 2. click to see the full guidelines table in a new window, 3. numerical guidelines appear in a mouse over tool tip, and 4. no guidelines provided (control). Results indicate that correspondence with the ICD 203 standard is substantially improved only when numerical guidelines are bracketed in text. For this condition, average correspondence was 66%, compared with 32% in the control. We also elicited ‘context-free’ numerical judgements from participants for each of the seven verbal probability expressions contained in ICD 203 (i.e., we asked participants what range of numbers they, personally, would assign to those expressions), and constructed ‘evidence-based lexicons’ based on two methods from similar research, ‘membership functions’ and ‘peak values’, that reflect our large sample’s intuitive translations of the terms. Better aligning the intended and assumed meaning of fuzzy words like ‘unlikely’ can reduce communication problems between the reporter and receiver of probabilistic information. In turn, this can improve decision making under uncertainty.

Original languageEnglish
Article numbere0213522
Number of pages18
JournalPLoS ONE
Issue number4
Publication statusPublished - 17 Apr 2019

Cite this