TY - JOUR
T1 - VEP optimal channel selection using genetic algorithm for neural network classification of alcoholics
AU - Palaniappan, Ramaswamy
AU - Raveendran, Paramesran
AU - Omatu, Sigeru
PY - 2002/3
Y1 - 2002/3
N2 - In this letter, neural networks (NNs) classify alcoholics and nonalcoholics using features extracted from visual evoked potential (VEP). A genetic algorithm (GA) is used to select the minimum number of channels that maximize classification performance. GA population fitness is evaluated using fuzzy ARTMAP (FA) NN, instead of the widely used multilayer perceptron (MLP). MLP, despite its effective classification, requires long training time (on the order of 103 times compared to FA). This causes it to be unsuitable to be used with GA, especially for on-line training. It is shown empirically that the optimal channel configuration selected by the proposed method is unbiased, i.e., it is optimal not only for FA but also for MLP classification. Therefore, it is proposed that for future experiments, these optimal channels could be considered for applications that involve classification of alcoholics.
AB - In this letter, neural networks (NNs) classify alcoholics and nonalcoholics using features extracted from visual evoked potential (VEP). A genetic algorithm (GA) is used to select the minimum number of channels that maximize classification performance. GA population fitness is evaluated using fuzzy ARTMAP (FA) NN, instead of the widely used multilayer perceptron (MLP). MLP, despite its effective classification, requires long training time (on the order of 103 times compared to FA). This causes it to be unsuitable to be used with GA, especially for on-line training. It is shown empirically that the optimal channel configuration selected by the proposed method is unbiased, i.e., it is optimal not only for FA but also for MLP classification. Therefore, it is proposed that for future experiments, these optimal channels could be considered for applications that involve classification of alcoholics.
KW - Alcoholism
KW - Digital filter
KW - Fuzzy ARTMAP (FA)
KW - Multilayer perceptron (MLP)
KW - Visual evoked potential (VEP)
UR - http://www.scopus.com/inward/record.url?scp=0036505605&partnerID=8YFLogxK
U2 - 10.1109/72.991435
DO - 10.1109/72.991435
M3 - Article
AN - SCOPUS:0036505605
VL - 13
SP - 486
EP - 491
JO - IEEE Transactions on Neural Networks and Learning Systems
JF - IEEE Transactions on Neural Networks and Learning Systems
SN - 2162-237X
IS - 2
ER -