TY - JOUR
T1 - VEGF-independent cell-autonomous functions of HIF-1α regulating oxygen consumption in fetal cartilage are critical for chondrocyte survival
AU - Maes, Christa
AU - Araldi, Elisa
AU - Haigh, Katharina
AU - Khatri, Richa
AU - Van Looveren, Riet
AU - Giaccia, Amato J.
AU - Haigh, Jody J.
AU - Carmeliet, Geert
AU - Schipani, Ernestina
PY - 2012/3
Y1 - 2012/3
N2 - Fetal growth plate cartilage is nonvascularized, and chondrocytes largely develop in hypoxic conditions. We previously found that mice lacking the hypoxia-inducible transcription factor HIF-1α in cartilage show massive death of centrally located, hypoxic chondrocytes. A similar phenotype was observed in mice with genetic ablation of either all or specifically the diffusible isoforms of vascular endothelial growth factor (VEGF), a prime angiogenic target of HIF-1α. Here, we assessed whether VEGF is a critical downstream component of the HIF-1α-dependent survival pathway in chondrocytes. We used a genetic approach to conditionally overexpress VEGF164 in chondrocytes lacking HIF-1α, evaluating potential rescuing effects. The effectiveness of the strategy was validated by showing that transgenic expression of VEGF164 in Col2-Cre;VEGF f/ f mice stimulated angiogenesis in the perichondrium, fully corrected the excessive hypoxia of VEGF-deficient chondrocytes, and completely prevented chondrocyte death. Yet, similarly crossed double-mutant embryos lacking HIF-1α and overexpressing VEGF164 in the growth plate cartilage still displayed a central cell death phenotype, albeit slightly delayed and less severe compared with mice exclusively lacking HIF-1α. Transgenic VEGF164 induced massive angiogenesis in the perichondrium, yet this only partially relieved the aberrant hypoxia present in HIF-1α-deficient cartilage and thereby likely inflicted only a partial rescue effect. In fact, excessive hypoxia and failure to upregulate phosphoglycerate-kinase 1 (PGK1), a key enzyme of anaerobic glycolytic metabolism, were among the earliest manifestations of HIF-1α deficiency in cartilaginous bone templates, and reduced PGK1 expression was irrespective of transgenic VEGF164. These findings suggest that HIF-1α activates VEGF-independent cell-autonomous mechanisms to sustain oxygen levels in the challenged avascular cartilage by reducing oxygen consumption. Hence, regulation of the metabolic pathways by HIF-1α and VEGF-dependent regulation of angiogenesis coordinately act to maintain physiological cartilage oxygenation. We conclude that VEGF and HIF-1α are critical preservers of chondrocyte survival by ensuring an adequate balance between availability and handling of oxygen in developing growth cartilage. Copyright © 2012 American Society for Bone and Mineral Research.
AB - Fetal growth plate cartilage is nonvascularized, and chondrocytes largely develop in hypoxic conditions. We previously found that mice lacking the hypoxia-inducible transcription factor HIF-1α in cartilage show massive death of centrally located, hypoxic chondrocytes. A similar phenotype was observed in mice with genetic ablation of either all or specifically the diffusible isoforms of vascular endothelial growth factor (VEGF), a prime angiogenic target of HIF-1α. Here, we assessed whether VEGF is a critical downstream component of the HIF-1α-dependent survival pathway in chondrocytes. We used a genetic approach to conditionally overexpress VEGF164 in chondrocytes lacking HIF-1α, evaluating potential rescuing effects. The effectiveness of the strategy was validated by showing that transgenic expression of VEGF164 in Col2-Cre;VEGF f/ f mice stimulated angiogenesis in the perichondrium, fully corrected the excessive hypoxia of VEGF-deficient chondrocytes, and completely prevented chondrocyte death. Yet, similarly crossed double-mutant embryos lacking HIF-1α and overexpressing VEGF164 in the growth plate cartilage still displayed a central cell death phenotype, albeit slightly delayed and less severe compared with mice exclusively lacking HIF-1α. Transgenic VEGF164 induced massive angiogenesis in the perichondrium, yet this only partially relieved the aberrant hypoxia present in HIF-1α-deficient cartilage and thereby likely inflicted only a partial rescue effect. In fact, excessive hypoxia and failure to upregulate phosphoglycerate-kinase 1 (PGK1), a key enzyme of anaerobic glycolytic metabolism, were among the earliest manifestations of HIF-1α deficiency in cartilaginous bone templates, and reduced PGK1 expression was irrespective of transgenic VEGF164. These findings suggest that HIF-1α activates VEGF-independent cell-autonomous mechanisms to sustain oxygen levels in the challenged avascular cartilage by reducing oxygen consumption. Hence, regulation of the metabolic pathways by HIF-1α and VEGF-dependent regulation of angiogenesis coordinately act to maintain physiological cartilage oxygenation. We conclude that VEGF and HIF-1α are critical preservers of chondrocyte survival by ensuring an adequate balance between availability and handling of oxygen in developing growth cartilage. Copyright © 2012 American Society for Bone and Mineral Research.
KW - CARTILAGE
KW - CHONDROCYTE SURVIVAL
KW - ENDOCHONDRAL OSSIFICATION
KW - HIF
KW - HYPOXIA
UR - http://www.scopus.com/inward/record.url?scp=84857316278&partnerID=8YFLogxK
U2 - 10.1002/jbmr.1487
DO - 10.1002/jbmr.1487
M3 - Article
C2 - 22162090
SN - 0884-0431
VL - 27
SP - 596
EP - 609
JO - Journal of Bone and Mineral Research
JF - Journal of Bone and Mineral Research
IS - 3
ER -