TY - JOUR
T1 - Variation in cold-related mortality in England since the introduction of the Cold Weather Plan
T2 - which areas have the greatest unmet needs?
AU - Murage, Peninah
AU - Hajat, Shakoor
AU - Bone, Angie
N1 - Publisher Copyright:
© 2018, MDPI AG. All rights reserved.
PY - 2018/11/19
Y1 - 2018/11/19
N2 - The Cold Weather Plan (CWP) in England was introduced to prevent the adverse health effects of cold weather; however, its impact is currently unknown. This study characterizes cold-related mortality and fuel poverty at STP (Sustainability and Transformation Partnership) level, and assesses changes in cold risk since the introduction of the CWP. Time series regression was used to estimate mortality risk for up to 28 days following exposure. Area level fuel poverty was used to indicate mitigation against cold exposure and mapped alongside area level risk. We found STP variations in mortality risk, ranging from 1.74, 1.44–2.09 (relative risk (RR), 95% CI) in Somerset, to 1.19, 1.01–1.40 in Cambridge and Peterborough. Following the introduction of the CWP, national-level mortality risk declined significantly in those aged 0–64 (1.34, 1.23–1.45, to 1.09, 1.00–1.19), but increased significantly among those aged 75+ (1.36, 1.28–1.44, to 1.58, 1.47–1.70) and for respiratory conditions (1.78, 1.56–2.02, to 2.4, 2.10–2.79). We show how spatial variation in cold mortality risk has increased since the introduction of the CWP, which may reflect differences in implementation of the plan. Combining risk with fuel poverty information identifies 14 STPs with the greatest need to address the cold effect, and that would gain most from enhanced CWP activity or additional intervention measures.
AB - The Cold Weather Plan (CWP) in England was introduced to prevent the adverse health effects of cold weather; however, its impact is currently unknown. This study characterizes cold-related mortality and fuel poverty at STP (Sustainability and Transformation Partnership) level, and assesses changes in cold risk since the introduction of the CWP. Time series regression was used to estimate mortality risk for up to 28 days following exposure. Area level fuel poverty was used to indicate mitigation against cold exposure and mapped alongside area level risk. We found STP variations in mortality risk, ranging from 1.74, 1.44–2.09 (relative risk (RR), 95% CI) in Somerset, to 1.19, 1.01–1.40 in Cambridge and Peterborough. Following the introduction of the CWP, national-level mortality risk declined significantly in those aged 0–64 (1.34, 1.23–1.45, to 1.09, 1.00–1.19), but increased significantly among those aged 75+ (1.36, 1.28–1.44, to 1.58, 1.47–1.70) and for respiratory conditions (1.78, 1.56–2.02, to 2.4, 2.10–2.79). We show how spatial variation in cold mortality risk has increased since the introduction of the CWP, which may reflect differences in implementation of the plan. Combining risk with fuel poverty information identifies 14 STPs with the greatest need to address the cold effect, and that would gain most from enhanced CWP activity or additional intervention measures.
KW - Cold weather
KW - Mortality
KW - Public health intervention
KW - Spatial variation
UR - http://www.scopus.com/inward/record.url?scp=85056915014&partnerID=8YFLogxK
U2 - 10.3390/ijerph15112588
DO - 10.3390/ijerph15112588
M3 - Article
C2 - 30463273
AN - SCOPUS:85056915014
SN - 1661-7827
VL - 15
JO - International Journal of Environmental Research and Public Health
JF - International Journal of Environmental Research and Public Health
IS - 11
M1 - 2588
ER -