TY - JOUR

T1 - Variance reduction in randomised trials by inverse probability weighting using the propensity score

AU - Williamson, Elizabeth Jane

AU - Forbes, Andrew Benjamin

AU - White, Ian R

PY - 2014

Y1 - 2014

N2 - In individually randomised controlled trials, adjustment for baseline characteristics is often undertaken to increase precision of the treatment effect estimate. This is usually performed using covariate adjustment in outcome regression models. An alternative method of adjustment is to use inverse probability-of-treatment weighting (IPTW), on the basis of estimated propensity scores. We calculate the large-sample marginal variance of IPTW estimators of the mean difference for continuous outcomes, and risk difference, risk ratio or odds ratio for binary outcomes. We show that IPTW adjustment always increases the precision of the treatment effect estimate. For continuous outcomes, we demonstrate that the IPTW estimator has the same large-sample marginal variance as the standard analysis of covariance estimator. However, ignoring the estimation of the propensity score in the calculation of the variance leads to the erroneous conclusion that the IPTW treatment effect estimator has the same variance as an unadjusted estimator; thus, it is important to use a variance estimator that correctly takes into account the estimation of the propensity score. The IPTW approach has particular advantages when estimating risk differences or risk ratios. In this case, non-convergence of covariate-adjusted outcome regression models frequently occurs. Such problems can be circumvented by using the IPTW adjustment approach.

AB - In individually randomised controlled trials, adjustment for baseline characteristics is often undertaken to increase precision of the treatment effect estimate. This is usually performed using covariate adjustment in outcome regression models. An alternative method of adjustment is to use inverse probability-of-treatment weighting (IPTW), on the basis of estimated propensity scores. We calculate the large-sample marginal variance of IPTW estimators of the mean difference for continuous outcomes, and risk difference, risk ratio or odds ratio for binary outcomes. We show that IPTW adjustment always increases the precision of the treatment effect estimate. For continuous outcomes, we demonstrate that the IPTW estimator has the same large-sample marginal variance as the standard analysis of covariance estimator. However, ignoring the estimation of the propensity score in the calculation of the variance leads to the erroneous conclusion that the IPTW treatment effect estimator has the same variance as an unadjusted estimator; thus, it is important to use a variance estimator that correctly takes into account the estimation of the propensity score. The IPTW approach has particular advantages when estimating risk differences or risk ratios. In this case, non-convergence of covariate-adjusted outcome regression models frequently occurs. Such problems can be circumvented by using the IPTW adjustment approach.

UR - http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4285308/pdf/sim0033-0721.pdf

U2 - 10.1002/sim.5991

DO - 10.1002/sim.5991

M3 - Article

VL - 33

SP - 721

EP - 737

JO - Statistics in Medicine

JF - Statistics in Medicine

SN - 0277-6715

IS - 5

ER -