Abstract
Clouds simulated by the European Centre for Medium-Range Weather Forecasts (ECMWF) model are composited to derive the typical organization of clouds surrounding a midlatitude baroclinic system. Comparison of this composite of about 200 cyclones with that based on satellite data reveals that the ECMWF model quite accurately simulates the general positioning of clouds relative to a low pressure center. However, the optical depths of the model's high/low clouds are too small/large relative to the satellite observations, and the model lacks the midlevel topped clouds observed to the west of the surface cold front. Sensitivity studies with the ECMWF model reveal that the error in high-cloud optical depths is more sensitive to the assumptions applied to the ice microphysics than to the inclusion of cloud advection or a change of horizontal resolution from 0.5625° to 1.69° lat. This reflects the fact that in the ECMWF model gravitational settling is the most rapid process controlling the abundance of ice in the high clouds of midlatitude cyclones. These results underscore the need for careful evaluation of the parameterizations of microphysics and radiative properties applied to ice in large-scale models.
Original language | English |
---|---|
Pages (from-to) | 2514-2531 |
Number of pages | 18 |
Journal | Monthly Weather Review |
Volume | 127 |
Issue number | 10 |
DOIs | |
Publication status | Published - 1 Jan 1999 |