TY - JOUR
T1 - Utilization of endogenous fatty acid stores for energy production in bovine preimplantation embryos
AU - Sutton-McDowall, Melanie L.
AU - Feil, Deanne
AU - Robker, Rebecca L.
AU - Thompson, Jeremy G.
AU - Dunning, Kylie R.
PY - 2012/5/1
Y1 - 2012/5/1
N2 - Although current embryo culture media are based on carbohydrate metabolism of embryos, little is known about metabolism of endogenous lipids. L-carnitine is a β-oxidation cofactor absent in most culture media. The objective was to investigate the influence of L-carnitine supplementation on bovine embryo development. Abattoir-derived bovine cumulus oocyte complexes were cultured and fertilized. Post-fertilization, presumptive zygotes were transferred into a basic cleavage medium ± carbohydrates (glucose, lactate and pyruvate) ± 5 m. m L-carnitine and cultured for 4 days in vitro. In the absence of carbohydrates during culture, embryos arrested at the 2- and 4-cell stages. Remarkably, +L-carnitine increased development to the morula stage compared to +carbohydrates alone (P < 0.001). The beneficial effects of L-carnitine were further demonstrated by inclusion of carbohydrates, with 14-fold more embryos reaching the morula stage after culture in the +carbohydrates +L-carnitine group compared to the +carbohydrates group (P < 0.05). Whereas there was a trend for +L-carnitine to increase ATP (P = 0.09), ADP levels were higher and ATP: ADP ratio were 1.9-fold lower (main effect, P < 0.05) compared to embryos cultured in -L-carnitine. Therefore, we inferred that +L-carnitine embryos were more metabolically active, with higher rates of ATP-ADP conversion. In conclusion, L-carnitine supplementation supported precompaction embryo development and there was an additive effect of +L-carnitine +carbohydrates on early embryo development, most likely through increased β-oxidation within embryos.
AB - Although current embryo culture media are based on carbohydrate metabolism of embryos, little is known about metabolism of endogenous lipids. L-carnitine is a β-oxidation cofactor absent in most culture media. The objective was to investigate the influence of L-carnitine supplementation on bovine embryo development. Abattoir-derived bovine cumulus oocyte complexes were cultured and fertilized. Post-fertilization, presumptive zygotes were transferred into a basic cleavage medium ± carbohydrates (glucose, lactate and pyruvate) ± 5 m. m L-carnitine and cultured for 4 days in vitro. In the absence of carbohydrates during culture, embryos arrested at the 2- and 4-cell stages. Remarkably, +L-carnitine increased development to the morula stage compared to +carbohydrates alone (P < 0.001). The beneficial effects of L-carnitine were further demonstrated by inclusion of carbohydrates, with 14-fold more embryos reaching the morula stage after culture in the +carbohydrates +L-carnitine group compared to the +carbohydrates group (P < 0.05). Whereas there was a trend for +L-carnitine to increase ATP (P = 0.09), ADP levels were higher and ATP: ADP ratio were 1.9-fold lower (main effect, P < 0.05) compared to embryos cultured in -L-carnitine. Therefore, we inferred that +L-carnitine embryos were more metabolically active, with higher rates of ATP-ADP conversion. In conclusion, L-carnitine supplementation supported precompaction embryo development and there was an additive effect of +L-carnitine +carbohydrates on early embryo development, most likely through increased β-oxidation within embryos.
KW - β-oxidation
KW - Cattle
KW - In vitro embryo production
KW - Lipids
UR - http://www.scopus.com/inward/record.url?scp=84863395032&partnerID=8YFLogxK
U2 - 10.1016/j.theriogenology.2011.12.008
DO - 10.1016/j.theriogenology.2011.12.008
M3 - Article
C2 - 22365693
AN - SCOPUS:84863395032
SN - 0093-691X
VL - 77
SP - 1632
EP - 1641
JO - Theriogenology
JF - Theriogenology
IS - 8
ER -