Using touch-evoked response and locomotion assays to assess muscle performance and function in zebrafish

Research output: Contribution to journalArticleResearchpeer-review

7 Citations (Scopus)

Abstract

Zebrafish muscle development is highly conserved with mammalian systems making them an excellent model to study muscle function and disease. Many myopathies affecting skeletal muscle function can be quickly and easily assessed in zebrafish over the first few days of embryogenesis. By 24 hr post-fertilization (hpf), wildtype zebrafish spontaneously contract their tail muscles and by 48 hpf, zebrafish exhibit controlled swimming behaviors. Reduction in the frequency of, or other alterations in, these movements may indicate a skeletal muscle dysfunction. To analyze swimming behavior and assess muscle performance in early zebrafish development, we utilize both touch-evoked escape response and locomotion assays. Touch-evoked escape response assays can be used to assess muscle performance during short burst movements resulting from contraction of fast-twitch muscle fibers. In response to an external stimulus, which in this case is a tap on the head, wildtype zebrafish at 2 days postfertilization (dpf) typically exhibit a powerful burst swim, accompanied by sharp turns. Our method quantifies skeletal muscle function by measuring the maximum acceleration during a burst swimming motion, the acceleration being directly proportional to the force produced by muscle contraction. In contrast, locomotion assays during early zebrafish larval development are used to assess muscle performance during sustained periods of muscle activity. Using a tracking system to monitor swimming behavior, we obtain an automated calculation of the frequency of activity and distance in 6-day old zebrafish, reflective of their skeletal muscle function. Measurements of swimming performance are valuable for phenotypic assessment of disease models and high-throughput screening of mutations or chemical treatments affecting skeletal muscle function.

Original languageEnglish
Article numbere54431
Number of pages6
JournalJournal of Visualized Experiments
Issue number116
DOIs
Publication statusPublished - 31 Oct 2016

Keywords

  • Developmental biology
  • Issue 116
  • Locomotion
  • Movement
  • Muscle
  • Myopathy
  • Swimming
  • Touch-evoke
  • Zebrafish

Cite this

@article{9455fca8456a4b3c8dc4c4d170e68460,
title = "Using touch-evoked response and locomotion assays to assess muscle performance and function in zebrafish",
abstract = "Zebrafish muscle development is highly conserved with mammalian systems making them an excellent model to study muscle function and disease. Many myopathies affecting skeletal muscle function can be quickly and easily assessed in zebrafish over the first few days of embryogenesis. By 24 hr post-fertilization (hpf), wildtype zebrafish spontaneously contract their tail muscles and by 48 hpf, zebrafish exhibit controlled swimming behaviors. Reduction in the frequency of, or other alterations in, these movements may indicate a skeletal muscle dysfunction. To analyze swimming behavior and assess muscle performance in early zebrafish development, we utilize both touch-evoked escape response and locomotion assays. Touch-evoked escape response assays can be used to assess muscle performance during short burst movements resulting from contraction of fast-twitch muscle fibers. In response to an external stimulus, which in this case is a tap on the head, wildtype zebrafish at 2 days postfertilization (dpf) typically exhibit a powerful burst swim, accompanied by sharp turns. Our method quantifies skeletal muscle function by measuring the maximum acceleration during a burst swimming motion, the acceleration being directly proportional to the force produced by muscle contraction. In contrast, locomotion assays during early zebrafish larval development are used to assess muscle performance during sustained periods of muscle activity. Using a tracking system to monitor swimming behavior, we obtain an automated calculation of the frequency of activity and distance in 6-day old zebrafish, reflective of their skeletal muscle function. Measurements of swimming performance are valuable for phenotypic assessment of disease models and high-throughput screening of mutations or chemical treatments affecting skeletal muscle function.",
keywords = "Developmental biology, Issue 116, Locomotion, Movement, Muscle, Myopathy, Swimming, Touch-evoke, Zebrafish",
author = "Sztal, {Tamar E.} and Ruparelia, {Avnika A.} and Caitlin Williams and Bryson-Richardson, {Robert J.}",
year = "2016",
month = "10",
day = "31",
doi = "10.3791/54431",
language = "English",
journal = "Journal of Visualized Experiments",
issn = "1940-087X",
publisher = "Journal of Visualized Experiments",
number = "116",

}

Using touch-evoked response and locomotion assays to assess muscle performance and function in zebrafish. / Sztal, Tamar E.; Ruparelia, Avnika A.; Williams, Caitlin; Bryson-Richardson, Robert J.

In: Journal of Visualized Experiments, No. 116, e54431, 31.10.2016.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Using touch-evoked response and locomotion assays to assess muscle performance and function in zebrafish

AU - Sztal, Tamar E.

AU - Ruparelia, Avnika A.

AU - Williams, Caitlin

AU - Bryson-Richardson, Robert J.

PY - 2016/10/31

Y1 - 2016/10/31

N2 - Zebrafish muscle development is highly conserved with mammalian systems making them an excellent model to study muscle function and disease. Many myopathies affecting skeletal muscle function can be quickly and easily assessed in zebrafish over the first few days of embryogenesis. By 24 hr post-fertilization (hpf), wildtype zebrafish spontaneously contract their tail muscles and by 48 hpf, zebrafish exhibit controlled swimming behaviors. Reduction in the frequency of, or other alterations in, these movements may indicate a skeletal muscle dysfunction. To analyze swimming behavior and assess muscle performance in early zebrafish development, we utilize both touch-evoked escape response and locomotion assays. Touch-evoked escape response assays can be used to assess muscle performance during short burst movements resulting from contraction of fast-twitch muscle fibers. In response to an external stimulus, which in this case is a tap on the head, wildtype zebrafish at 2 days postfertilization (dpf) typically exhibit a powerful burst swim, accompanied by sharp turns. Our method quantifies skeletal muscle function by measuring the maximum acceleration during a burst swimming motion, the acceleration being directly proportional to the force produced by muscle contraction. In contrast, locomotion assays during early zebrafish larval development are used to assess muscle performance during sustained periods of muscle activity. Using a tracking system to monitor swimming behavior, we obtain an automated calculation of the frequency of activity and distance in 6-day old zebrafish, reflective of their skeletal muscle function. Measurements of swimming performance are valuable for phenotypic assessment of disease models and high-throughput screening of mutations or chemical treatments affecting skeletal muscle function.

AB - Zebrafish muscle development is highly conserved with mammalian systems making them an excellent model to study muscle function and disease. Many myopathies affecting skeletal muscle function can be quickly and easily assessed in zebrafish over the first few days of embryogenesis. By 24 hr post-fertilization (hpf), wildtype zebrafish spontaneously contract their tail muscles and by 48 hpf, zebrafish exhibit controlled swimming behaviors. Reduction in the frequency of, or other alterations in, these movements may indicate a skeletal muscle dysfunction. To analyze swimming behavior and assess muscle performance in early zebrafish development, we utilize both touch-evoked escape response and locomotion assays. Touch-evoked escape response assays can be used to assess muscle performance during short burst movements resulting from contraction of fast-twitch muscle fibers. In response to an external stimulus, which in this case is a tap on the head, wildtype zebrafish at 2 days postfertilization (dpf) typically exhibit a powerful burst swim, accompanied by sharp turns. Our method quantifies skeletal muscle function by measuring the maximum acceleration during a burst swimming motion, the acceleration being directly proportional to the force produced by muscle contraction. In contrast, locomotion assays during early zebrafish larval development are used to assess muscle performance during sustained periods of muscle activity. Using a tracking system to monitor swimming behavior, we obtain an automated calculation of the frequency of activity and distance in 6-day old zebrafish, reflective of their skeletal muscle function. Measurements of swimming performance are valuable for phenotypic assessment of disease models and high-throughput screening of mutations or chemical treatments affecting skeletal muscle function.

KW - Developmental biology

KW - Issue 116

KW - Locomotion

KW - Movement

KW - Muscle

KW - Myopathy

KW - Swimming

KW - Touch-evoke

KW - Zebrafish

UR - http://www.scopus.com/inward/record.url?scp=84994673980&partnerID=8YFLogxK

U2 - 10.3791/54431

DO - 10.3791/54431

M3 - Article

JO - Journal of Visualized Experiments

JF - Journal of Visualized Experiments

SN - 1940-087X

IS - 116

M1 - e54431

ER -