TY - JOUR
T1 - Using machine learning to optimize antibiotic combinations
T2 - dosing strategies for meropenem and polymyxin B against carbapenem-resistant Acinetobacter baumannii
AU - Smith, N. M.
AU - Lenhard, J. R.
AU - Boissonneault, K. R.
AU - Landersdorfer, C.B.
AU - Bulitta, J. B.
AU - Holden, P. N.
AU - Forrest, A.
AU - Nation, R.L.
AU - Li, J.
AU - Tsuji, B. T.
PY - 2020/9/1
Y1 - 2020/9/1
N2 - Objectives: Increased rates of carbapenem-resistant strains of Acinetobacter baumannii have forced clinicians to rely upon last-line agents, such as the polymyxins, or empirical, unoptimized combination therapy. Therefore, the objectives of this study were: (a) to evaluate the in vitro pharmacodynamics of meropenem and polymyxin B (PMB) combinations against A. baumannii; (b) to utilize a mechanism-based mathematical model to quantify bacterial killing; and (c) to develop a genetic algorithm (GA) to define optimal dosing strategies for meropenem and PMB. Methods: A. baumannii (N16870; MICmeropenem = 16 mg/L, MICPMB = 0.5 mg/L) was studied in the hollow-fibre infection model (initial inoculum 108 cfu/mL) over 14 days against meropenem and PMB combinations. A mechanism-based model of the data and population pharmacokinetics of each drug were used to develop a GA to define the optimal regimen parameters. Results: Monotherapies resulted in regrowth to ~1010 cfu/mL by 24 h, while combination regimens employing high-intensity PMB exposure achieved complete bacterial eradication (0 cfu/mL) by 336 h. The mechanism-based model demonstrated an SC50 (PMB concentration for 50% of maximum synergy on meropenem killing) of 0.0927 mg/L for PMB-susceptible subpopulations versus 3.40 mg/L for PMB-resistant subpopulations. The GA had a preference for meropenem regimens that improved the %T > MIC via longer infusion times and shorter dosing intervals. The GA predicted that treating 90% of simulated subjects harbouring a 108 cfu/mL starting inoculum to a point of 100 cfu/mL would require a regimen of meropenem 19.6 g/day 2 h prolonged infusion (2 hPI) q5h + PMB 5.17 mg/kg/day 2 hPI q6h (where the 0 h meropenem and PMB doses should be ‘loaded’ with 80.5% and 42.2% of the daily dose, respectively). Conclusion: This study provides a methodology leveraging in vitro experimental data, a mathematical pharmacodynamic model, and population pharmacokinetics provide a possible avenue to optimize treatment regimens beyond the use of the ‘traditional’ indices of antibiotic action.
AB - Objectives: Increased rates of carbapenem-resistant strains of Acinetobacter baumannii have forced clinicians to rely upon last-line agents, such as the polymyxins, or empirical, unoptimized combination therapy. Therefore, the objectives of this study were: (a) to evaluate the in vitro pharmacodynamics of meropenem and polymyxin B (PMB) combinations against A. baumannii; (b) to utilize a mechanism-based mathematical model to quantify bacterial killing; and (c) to develop a genetic algorithm (GA) to define optimal dosing strategies for meropenem and PMB. Methods: A. baumannii (N16870; MICmeropenem = 16 mg/L, MICPMB = 0.5 mg/L) was studied in the hollow-fibre infection model (initial inoculum 108 cfu/mL) over 14 days against meropenem and PMB combinations. A mechanism-based model of the data and population pharmacokinetics of each drug were used to develop a GA to define the optimal regimen parameters. Results: Monotherapies resulted in regrowth to ~1010 cfu/mL by 24 h, while combination regimens employing high-intensity PMB exposure achieved complete bacterial eradication (0 cfu/mL) by 336 h. The mechanism-based model demonstrated an SC50 (PMB concentration for 50% of maximum synergy on meropenem killing) of 0.0927 mg/L for PMB-susceptible subpopulations versus 3.40 mg/L for PMB-resistant subpopulations. The GA had a preference for meropenem regimens that improved the %T > MIC via longer infusion times and shorter dosing intervals. The GA predicted that treating 90% of simulated subjects harbouring a 108 cfu/mL starting inoculum to a point of 100 cfu/mL would require a regimen of meropenem 19.6 g/day 2 h prolonged infusion (2 hPI) q5h + PMB 5.17 mg/kg/day 2 hPI q6h (where the 0 h meropenem and PMB doses should be ‘loaded’ with 80.5% and 42.2% of the daily dose, respectively). Conclusion: This study provides a methodology leveraging in vitro experimental data, a mathematical pharmacodynamic model, and population pharmacokinetics provide a possible avenue to optimize treatment regimens beyond the use of the ‘traditional’ indices of antibiotic action.
KW - Acinetobacter baumannii
KW - Antibiotic resistance
KW - Combination therapy
KW - Genetic algorithm
KW - Machine learning
KW - Mechanism-based model
KW - Meropenem
KW - Pharmacodynamics
KW - Pharmacometrics
KW - Polymyxin
UR - http://www.scopus.com/inward/record.url?scp=85082431861&partnerID=8YFLogxK
U2 - 10.1016/j.cmi.2020.02.004
DO - 10.1016/j.cmi.2020.02.004
M3 - Article
C2 - 32061797
AN - SCOPUS:85082431861
SN - 1198-743X
VL - 23
SP - 1207
EP - 1213
JO - Clinical Microbiology and Infection
JF - Clinical Microbiology and Infection
IS - 9
ER -