Abstract
Solution-processed perovskite solar cells reach efficiencies over 23% on lab-scale. However, a reproducible transfer of these established processes to upscaling techniques or different substrate surfaces requires a highly controllable perovskite film formation. Especially, hydrophobic surfaces cause severe dewetting issues. Such surfaces are particularly crucial for the so-called standard n-i-p cell architecture when fullerene-based electron transport layers are employed underneath perovskite absorber films. In this work, a unique and universally applicable method was developed based on the deposition of size-controlled Al 2 O 3 or SiO 2 nanoparticles. By enhancing the surface energy, they act as a universal wetting agent. This allows perovskite precursor solutions to be spread perfectly over various substrates including problematic hydrophobic Si-wafers or fullerene self-assembled monolayers (C 60 -SAMs). Moreover, the results show that the perovskite morphology, solar cell performance, and reproducibility benefit from the presence of the nanoparticles at the interface. When applied to 144 cm 2 C 60 -SAM-coated substrates, homogenous coverage can be realized via spin coating resulting in average efficiencies of 16% (maximum 18%) on individualized cells with 0.1 cm 2 active area. Modules in the same setup reached maximum efficiencies of 11 and 7% on 2.8 and 23.65 cm 2 aperture areas, respectively.
Original language | English |
---|---|
Pages (from-to) | 12948-12957 |
Number of pages | 10 |
Journal | ACS Applied Materials & Interfaces |
Volume | 11 |
Issue number | 13 |
DOIs | |
Publication status | Published - 12 Mar 2019 |
Externally published | Yes |
Keywords
- contact angles
- nanoparticles
- perovskites
- surface modification
- upscaling
- wetting