Unilateral hearing losses alter loud sound-induced temporary threshold shifts and efferent effects in the normal-hearing ear

Research output: Contribution to journalArticleResearchpeer-review

14 Citations (Scopus)


In animals with bilaterally normal hearing, olivocochlear pathways can protect the cochlea from the temporary shifts in hearing sensitivity (temporary threshold shifts: TTSs) caused by short-duration intense loud sounds. The crossed olivocochlear pathway provides protection during binaural loud sound, and uncrossed pathways protect when monaural or binaural loud sounds occur in noise backgrounds. Here I demonstrate that when there is a chronic unilateral hearing loss, effects of loud sounds, and efferent effects on loud sound, in the normal-hearing ear differ markedly from normal. Three categories of test animals with unilateral hearing loss were tested for effects at the normal-hearing ear. In all categories a monaural loud tone to the normal-hearing ear produced lower-than-normal TTSs, apparently because of a tonic resetting of that ear's susceptibility to loud sound. Second, in the two test categories in which the hearing-loss ear was only partly damaged, binaural loud sound exacerbated TTSs in the normal-hearing ear because it caused threshold shifts that were a combination of "pure" TTSs and uncrossed efferent suppression of cochlear sensitivity. (In normal cats, this binaural tone results in crossed olivocochlear protection that reduces TTS.) Binaural loud sound did not produce such uncrossed efferent effects in the test category in which the nontest ear had suffered total hearing loss, suggesting that this uncrossed efferent effect required binaural input to the CNS. It is noteworthy that, in the absence of this uncrossed efferent suppression, the pure loud sound-alone induced TTSs after binaural exposure were low. Thus in the absence of any efferent effect, the normal-hearing cochlea had a reduced susceptibility to loud tone-induced damage. Finally, the results suggest that, with respect to cochlear actions at high sound levels, uncrossed and crossed efferent pathways may exert different effects at the one type of receptor cell.

Original languageEnglish
Pages (from-to)1257-1269
Number of pages13
JournalJournal of Neurophysiology
Issue number3
Publication statusPublished - 24 Mar 2001

Cite this