Unexpected anti-hypertrophic responses to low-level stimulation of protease-activated receptors in adult rat cardiomyocytes

Anke C Fender, Goran Pavic, Grant Raymond Drummond, Gregory James Dusting, Rebecca H Ritchie

Research output: Contribution to journalArticleResearchpeer-review

1 Citation (Scopus)


Activators of protease-activated receptors PAR-1 and PAR-2 such as thrombin and synthetic hexapeptides promote hypertrophy of isolated neonatal cardiomyocytes at pathological concentrations. Since PAR-activating proteases often show dual actions at low vs. high concentrations, the potential hypertrophic effects of low-level PAR activation were examined. In H9c2 cardiomyoblasts, messenger RNA (mRNA) expression of the hypertrophic marker atrial natriuretic peptide (ANP) was significantly increased only by higher concentrations of thrombin, trypsin or the synthetic PAR-2 agonist SLIGRL. The dual PAR-1/PAR-2 agonist SFLLRN did not influence basal ANP mRNA expression in H9c2 cells. Low concentration of thrombin or trypsin (up to 0.1 U/mL) or of the synthetic ligands SFLLRN and SLIGRL (1 ?M); however, all suppressed ANP mRNA expression stimulated by angiotensin II (Ang II). The PAR-1 selective ligand TFLLRN exerted a comparable effect as SFLLRN. In adult rat cardiomyocytes, protein synthesis determined by [3H]phenylalanine incorporation was not increased by various PAR agonists at concentrations tenfold lower than conventionally used to study PAR function in vitro (10 ?M for SFLLRN or SLIGRL, 0.1 U/mL for thrombin or trypsin). The positive control endothelin-1 (ET-1, 60 nM) however significantly increased protein synthesis in adult rat cardiomyocytes. Addition of low concentrations of PAR agonists to cardiomyocytes treated with ET-1 or Ang II suppressed [3H]phenylalanine incorporation induced by the hypertrophic stimuli. The inhibitory effect of SFLLRN effect was partially reversed by the PAR-1 antagonist RWJ56110. These findings suggest that physiological concentrations of PAR activators may suppress hypertrophy, in contrast to the pro-hypertrophic effects evident at high concentrations. PAR-1 and PAR-2 may dynamically control cardiomyocyte growth, with the net effect critically dependent upon local agonist concentrations. The precise significance of proposed concept of bimodal PAR function in cardiomyocytes remains to be defined, particularly in vivo where hemodynamic and other regulatory factors may counteract or mask the direct cellular actions described here
Original languageEnglish
Pages (from-to)1001 - 1007
Number of pages7
JournalNaunyn-Schmiedeberg's Archives of Pharmacology
Issue number10
Publication statusPublished - 2014

Cite this