Projects per year
Abstract
Real-time monitoring using in-situ sensors is becoming a common approach for measuring water-quality within watersheds. High-frequency measurements produce big datasets that present opportunities to conduct new analyses for improved understanding of water-quality dynamics and more effective management of rivers and streams. Of primary importance is enhancing knowledge of the relationships between nitrate, one of the most reactive forms of inorganic nitrogen in the aquatic environment, and other water-quality variables. We analysed high-frequency water-quality data from in-situ sensors deployed in three sites from different watersheds and climate zones within the National Ecological Observatory Network, USA. We used generalised additive mixed models to explain the nonlinear relationships at each site between nitrate concentration and conductivity, turbidity, dissolved oxygen, water temperature, and elevation. Temporal auto-correlation was modelled with an auto-regressive- moving-average (ARIMA) model and we examined the relative importance of the explanatory variables. Total deviance explained by the models was high for all sites (99%). Although variable importance and the smooth regression parameters differed among sites, the models explaining the most variation in nitrate contained the same explanatory variables. This study demonstrates that building a model for nitrate using the same set of explanatory water-quality variables is achievable, even for sites with vastly different environmental and climatic characteristics. Applying such models will assist managers to select cost-effective water-quality variables to monitor when the goals are to gain a spatial and temporal in-depth understanding of nitrate dynamics and adapt management plans accordingly.
Original language | English |
---|---|
Article number | e0287640 |
Number of pages | 16 |
Journal | PLoS ONE |
Volume | 18 |
Issue number | 6 |
DOIs | |
Publication status | Published - Jun 2023 |
Projects
- 2 Finished
-
Revolutionising water-quality monitoring in the information age
Mengersen, K. L., Hyndman, R., Peterson, E. E., McGree, J., Leigh, C., Turner, R., Liquet, B., Jones, J. & Muriuki, G.
1/08/19 → 31/07/22
Project: Research
-
ARC Centre of Excellence for Mathematical and Statistical Frontiers of Big Data, Big Models, New Insights
Hall, P., Bartlett, P., Bean, N., Burrage, K., DeGier, J., Delaigle, A., Forrester, P., Geweke, J., Kohn, R., Kroese, D., Mengersen, K. L., Pettit, A., Pollett, P., Roughan, M., Ryan, L. M., Taylor, P., Turner, I., Wand, M., Garoni, T., Smith-Miles, K. A., Caley, M., Churches, T., Elazar, D., Gupta, A., Harch, B., Tam, S., Weegberg, K., Willinger, W. & Hyndman, R.
Australian Research Council (ARC), Monash University – Internal Department Contribution, University of Melbourne, Queensland University of Technology (QUT), University of Adelaide, University of New South Wales (UNSW), University of Queensland , University of Technology (UTS) Sydney, Monash University – Internal University Contribution, Monash University – Internal Faculty Contribution, Monash University – Internal School Contribution, Roads Corporation (trading as VicRoads) (Victoria)
1/01/17 → 31/12/21
Project: Research