Abstract
We demonstrate an ultracompact, chip-based, all-optical exclusive-OR (XOR) logic gate via slow-light enhanced four-wave mixing (FWM) in a silicon photonic crystal waveguide (PhCWG). We achieve error-free operation (<10−9) for 40 Gbit/s differential phase-shift keying (DPSK) signals with a 2.8 dB power penalty. Slowing the light to vg = c/32 enables a FWM conversion efficiency, η, of -30 dB for a 396 μm device. The nonlinear FWM process is enhanced by 20 dB compared to a relatively fast mode of vg = c/5. The XOR operation requires ≈ 41 mW, corresponding to a switching energy of 1 pJ/bit. We compare the slow-light PhCWG device performance with experimentally demonstrated XOR DPSK logic gates in other platforms and discuss scaling the device operation to higher bit-rates. The ultracompact structure suggests the potential for device integration.
Original language | English |
---|---|
Pages (from-to) | 20681-20690 |
Number of pages | 10 |
Journal | Optics Express |
Volume | 19 |
Issue number | 21 |
DOIs | |
Publication status | Published - 2011 |
Externally published | Yes |