TY - JOUR
T1 - Tumor necrosis factor-α-induced nuclear factor-kappaB activation in human cardiomyocytes is mediated by NADPH oxidase
AU - Moe, Kyaw Thu
AU - Khairunnisa, Katwadi
AU - Yin, Nwe Oo
AU - Chin-Dusting, Jaye
AU - Wong, Philip
AU - Wong, Meng Cheong
PY - 2014/9
Y1 - 2014/9
N2 - An elevated level of tumor necrosis factor (TNF)-α is implicated in several cardiovascular diseases including heart failure. Numerous reports have demonstrated that TNF-α activates nuclear factor (NF)-kappaB, resulting in the upregulation of several genes that regulate inflammation, proliferation, and apoptosis of cardiomyocytes. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, a major source of reactive oxygen species (ROS), is also activated by TNF-α and plays a crucial role in redox-sensitive signaling pathways. The present study investigated whether NADPH oxidase mediates TNF-α-induced NF-kappaB activation and NF-kappaB-mediated gene expression. Human cardiomyocytes were treated with recombinant TNF-α with or without pretreatment with diphenyleneiodonium (DPI) and apocynin, inhibitors of NADPH oxidase. TNF-α-induced ROS production was measured using 5-(and-6)-chloromethyl-2’, 7’-dichlorodihydrofluorescein diacetate assay. TNF-α-induced NF-kappaB activation was also examined using immunoblot; NF-kappaB binding to its binding motif was determined using a Cignal reporter luciferase assay and an electrophoretic mobility shift assay. TNF-α-induced upregulation of interleukin (IL)-1β and vascular cell adhesion molecule (VCAM)-1 was investigated using real-time PCR and immunoblot. TNF-α-induced ROS production in cardiomyocytes was mediated by NADPH oxidase. Phosphorylation of IKK-α/β and p65, degradation of IkappaBα, binding of NF-kappaB to its binding motif, and upregulation of IL-1β and VCAM-1 induced by TNF-α were significantly attenuated by treatment with DPI and apocynin. Collectively, these findings demonstrate that NADPH oxidase plays a role in regulation of TNF-α-induced NF-kappaB activation and upregulation of proinflammatory cytokines, IL-1β and VCAM-1, in human cardiomyocytes.
AB - An elevated level of tumor necrosis factor (TNF)-α is implicated in several cardiovascular diseases including heart failure. Numerous reports have demonstrated that TNF-α activates nuclear factor (NF)-kappaB, resulting in the upregulation of several genes that regulate inflammation, proliferation, and apoptosis of cardiomyocytes. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, a major source of reactive oxygen species (ROS), is also activated by TNF-α and plays a crucial role in redox-sensitive signaling pathways. The present study investigated whether NADPH oxidase mediates TNF-α-induced NF-kappaB activation and NF-kappaB-mediated gene expression. Human cardiomyocytes were treated with recombinant TNF-α with or without pretreatment with diphenyleneiodonium (DPI) and apocynin, inhibitors of NADPH oxidase. TNF-α-induced ROS production was measured using 5-(and-6)-chloromethyl-2’, 7’-dichlorodihydrofluorescein diacetate assay. TNF-α-induced NF-kappaB activation was also examined using immunoblot; NF-kappaB binding to its binding motif was determined using a Cignal reporter luciferase assay and an electrophoretic mobility shift assay. TNF-α-induced upregulation of interleukin (IL)-1β and vascular cell adhesion molecule (VCAM)-1 was investigated using real-time PCR and immunoblot. TNF-α-induced ROS production in cardiomyocytes was mediated by NADPH oxidase. Phosphorylation of IKK-α/β and p65, degradation of IkappaBα, binding of NF-kappaB to its binding motif, and upregulation of IL-1β and VCAM-1 induced by TNF-α were significantly attenuated by treatment with DPI and apocynin. Collectively, these findings demonstrate that NADPH oxidase plays a role in regulation of TNF-α-induced NF-kappaB activation and upregulation of proinflammatory cytokines, IL-1β and VCAM-1, in human cardiomyocytes.
KW - Cardiomyocytes
KW - NADPH oxidase
KW - NF-kappa B
KW - Signaling mechanism
KW - TNF-α
UR - http://www.scopus.com/inward/record.url?scp=84933052405&partnerID=8YFLogxK
U2 - 10.1007/s13105-014-0345-0
DO - 10.1007/s13105-014-0345-0
M3 - Article
C2 - 25059721
AN - SCOPUS:84933052405
SN - 1138-7548
VL - 70
SP - 769
EP - 779
JO - Journal of Physiology and Biochemistry
JF - Journal of Physiology and Biochemistry
IS - 3
ER -