TRiPOD: human TRajectory and POse Dynamics forecasting in the wild

Vida Adeli, Mahsa Ehsanpour, Ian Reid, Juan Carlos Niebles, Silvio Savarese, Ehsan Adeli, Hamid Rezatofighi

Research output: Chapter in Book/Report/Conference proceedingConference PaperResearchpeer-review

24 Citations (Scopus)

Abstract

Joint forecasting of human trajectory and pose dynamics is a fundamental building block of various applications ranging from robotics and autonomous driving to surveillance systems. Predicting body dynamics requires capturing subtle information embedded in the humans' interactions with each other and with the objects present in the scene. In this paper, we propose a novel TRajectory and POse Dynamics (nicknamed TRiPOD) method based on graph attentional networks to model the human-human and human-object interactions both in the input space and the output space (decoded future output). The model is supplemented by a message passing interface over the graphs to fuse these different levels of interactions efficiently. Furthermore, to incorporate a real-world challenge, we propound to learn an indicator representing whether an estimated body joint is visible/invisible at each frame, e.g. due to occlusion or being outside the sensor field of view. Finally, we introduce a new benchmark for this joint task based on two challenging datasets (PoseTrack and 3DPW) and propose evaluation metrics to measure the effectiveness of predictions in the global space, even when there are invisible cases of joints. Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.

Original languageEnglish
Title of host publicationProceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021
EditorsEric Mortensen
Place of PublicationPiscataway NJ USA
PublisherIEEE, Institute of Electrical and Electronics Engineers
Pages13370-13380
Number of pages11
ISBN (Electronic)9781665428125
DOIs
Publication statusPublished - 2021
EventIEEE International Conference on Computer Vision 2021 - Online, United States of America
Duration: 11 Oct 202117 Oct 2021
https://iccv2021.thecvf.com/home (Website)
https://ieeexplore.ieee.org/xpl/conhome/9709627/proceeding (Proceedings)

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

ConferenceIEEE International Conference on Computer Vision 2021
Abbreviated titleICCV 2021
Country/TerritoryUnited States of America
CityOnline
Period11/10/2117/10/21
Internet address

Cite this