Projects per year
Abstract
Summary: The trigonometric angle-sum formulas are given a new interpretation as statements about conformal maps. In particular, we show how the angle-sum formula for tangent can be realized by equating two different conformal maps from an infinite strip to a disk, and the formulas for sine and cosine by similarly equating conformal maps from an infinite strip to a certain slit domain.
Original language | English |
---|---|
Pages (from-to) | 195-199 |
Number of pages | 5 |
Journal | College Mathematics Journal |
Volume | 54 |
Issue number | 3 |
DOIs | |
Publication status | Published - 3 May 2023 |
Projects
- 2 Finished
-
Planar Brownian motion and complex analysis
Australian Research Council (ARC)
2/01/14 → 11/01/17
Project: Research
-
New Stochastic Processes with Applications in Finance
Klebaner, F., Buchmann, B. & Hamza, K.
Australian Research Council (ARC), Monash University
31/07/09 → 31/12/13
Project: Research