Transition of the initial mass function in the galaxy based on binary population synthesis

Takuma Suda, Yutaka Komiya, Shimako Yamada, Yutaka Katsuta, Wako Aoki, Pilar Gil-Pons, Carolyn L. Doherty, Simon W. Campbell, Peter R Wood, Masayuki Y Fujimoto

Research output: Chapter in Book/Report/Conference proceedingConference PaperResearchpeer-review

2 Citations (Scopus)


We construct a binary population synthesis model to explore the star formation history of the Galaxy. The model includes the effects of AGB evolution and binary mass transfer for a given IMF and binary period distribution function. We discuss the origins of extremely metal-poor stars with enhancement of carbon or nitrogen, with the possible effect of mass loss at low-metallicity taken into account. Our results strongly support high-mass dominated star formation during the early epoch of the Galaxy in order to explain the observed frequency of carbon and nitrogen enhancements that are thought to result from mass transfer from a former AGB binary companion. Our model also suggests that the IMF had a transition phase at [Fe/H] ∼ -2.
Original languageEnglish
Title of host publicationFirst Stars IV - From Hayashi to the Future
Subtitle of host publicationKyoto, Japan; 21-25 May 2012
EditorsMasayuki Umemura, Kazuyuki Omukai
Place of PublicationUSA
PublisherAIP Publishing
Number of pages3
ISBN (Print)9780735410923
Publication statusPublished - 1 Dec 2012
EventConference on FIRST STARS - From Hayashi to the Future 2012 - Kyoto, Japan
Duration: 21 May 201225 May 2012
Conference number: 4th

Publication series

NameAIP Conference Proceedings
PublisherAIP Publishing
ISSN (Print)0094-243x


ConferenceConference on FIRST STARS - From Hayashi to the Future 2012


  • AGB stars
  • binary evolution
  • stellar evolution

Cite this