Transcriptional regulation of pattern recognition receptors by Jak/STAT signaling, and the implications for disease pathogenesis

Research output: Contribution to journalArticleResearchpeer-review

7 Citations (Scopus)

Abstract

Cytokines are well known for their pleiotropism, affecting a large number of cellular responses, including proliferation, survival, functional maturation, and immunomodulation. It is, therefore, not surprising that both the deregulated expression of cytokines and the subsequent activation of their downstream signaling pathways is a common feature of many cancers, as well as chronic inflammatory, autoimmune, metabolic, and cardiovascular diseases. In this regard, activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is the predominant intracellular signaling event triggered by cytokines, with STAT1 and STAT3 having the greatest diversity of biological functions among the 7 known members of the STAT family of latent transcription factors. Notably, over recent years, it has emerged that STAT1 and STAT3 are employed by various cytokines to manipulate the signal output of heterologous receptors of the innate immune system, namely pattern recognition receptors (PRRs), with both immune and nonimmune (eg, oncogenic, metabolic) cellular processes being affected. This review highlights these pivotal advancements in our understanding of how a cross talk between cytokine and PRR signaling networks can impact on a variety of cellular responses during disease pathogenesis, and the potential therapeutic implications of targeting these networks.
Original languageEnglish
Pages (from-to)750 - 758
Number of pages9
JournalJournal of Interferon and Cytokine Research
Volume34
Issue number10
DOIs
Publication statusPublished - 2014

Cite this

@article{0fc1a1edf522433db40a566e9e8869d3,
title = "Transcriptional regulation of pattern recognition receptors by Jak/STAT signaling, and the implications for disease pathogenesis",
abstract = "Cytokines are well known for their pleiotropism, affecting a large number of cellular responses, including proliferation, survival, functional maturation, and immunomodulation. It is, therefore, not surprising that both the deregulated expression of cytokines and the subsequent activation of their downstream signaling pathways is a common feature of many cancers, as well as chronic inflammatory, autoimmune, metabolic, and cardiovascular diseases. In this regard, activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is the predominant intracellular signaling event triggered by cytokines, with STAT1 and STAT3 having the greatest diversity of biological functions among the 7 known members of the STAT family of latent transcription factors. Notably, over recent years, it has emerged that STAT1 and STAT3 are employed by various cytokines to manipulate the signal output of heterologous receptors of the innate immune system, namely pattern recognition receptors (PRRs), with both immune and nonimmune (eg, oncogenic, metabolic) cellular processes being affected. This review highlights these pivotal advancements in our understanding of how a cross talk between cytokine and PRR signaling networks can impact on a variety of cellular responses during disease pathogenesis, and the potential therapeutic implications of targeting these networks.",
author = "Jenkins, {Brendan John}",
year = "2014",
doi = "10.1089/jir.2014.0081",
language = "English",
volume = "34",
pages = "750 -- 758",
journal = "Journal of Interferon and Cytokine Research",
issn = "1079-9907",
publisher = "Mary Ann Liebert Inc",
number = "10",

}

TY - JOUR

T1 - Transcriptional regulation of pattern recognition receptors by Jak/STAT signaling, and the implications for disease pathogenesis

AU - Jenkins, Brendan John

PY - 2014

Y1 - 2014

N2 - Cytokines are well known for their pleiotropism, affecting a large number of cellular responses, including proliferation, survival, functional maturation, and immunomodulation. It is, therefore, not surprising that both the deregulated expression of cytokines and the subsequent activation of their downstream signaling pathways is a common feature of many cancers, as well as chronic inflammatory, autoimmune, metabolic, and cardiovascular diseases. In this regard, activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is the predominant intracellular signaling event triggered by cytokines, with STAT1 and STAT3 having the greatest diversity of biological functions among the 7 known members of the STAT family of latent transcription factors. Notably, over recent years, it has emerged that STAT1 and STAT3 are employed by various cytokines to manipulate the signal output of heterologous receptors of the innate immune system, namely pattern recognition receptors (PRRs), with both immune and nonimmune (eg, oncogenic, metabolic) cellular processes being affected. This review highlights these pivotal advancements in our understanding of how a cross talk between cytokine and PRR signaling networks can impact on a variety of cellular responses during disease pathogenesis, and the potential therapeutic implications of targeting these networks.

AB - Cytokines are well known for their pleiotropism, affecting a large number of cellular responses, including proliferation, survival, functional maturation, and immunomodulation. It is, therefore, not surprising that both the deregulated expression of cytokines and the subsequent activation of their downstream signaling pathways is a common feature of many cancers, as well as chronic inflammatory, autoimmune, metabolic, and cardiovascular diseases. In this regard, activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is the predominant intracellular signaling event triggered by cytokines, with STAT1 and STAT3 having the greatest diversity of biological functions among the 7 known members of the STAT family of latent transcription factors. Notably, over recent years, it has emerged that STAT1 and STAT3 are employed by various cytokines to manipulate the signal output of heterologous receptors of the innate immune system, namely pattern recognition receptors (PRRs), with both immune and nonimmune (eg, oncogenic, metabolic) cellular processes being affected. This review highlights these pivotal advancements in our understanding of how a cross talk between cytokine and PRR signaling networks can impact on a variety of cellular responses during disease pathogenesis, and the potential therapeutic implications of targeting these networks.

UR - http://online.liebertpub.com/doi/pdf/10.1089/jir.2014.0081

U2 - 10.1089/jir.2014.0081

DO - 10.1089/jir.2014.0081

M3 - Article

VL - 34

SP - 750

EP - 758

JO - Journal of Interferon and Cytokine Research

JF - Journal of Interferon and Cytokine Research

SN - 1079-9907

IS - 10

ER -