Abstract
Fisher's linear discriminant analysis is a widely accepted dimensionality reduction method, which aims to find a transformation matrix to convert feature space to a smaller space by maximising the between-class scatter matrix while minimising the within-class scatter matrix. Although the fast and easy process of finding the transformation matrix has made this method attractive, overemphasizing the large class distances makes the criterion of this method suboptimal. In this case, the close class pairs tend to overlap in the subspace. Despite different weighting methods having been developed to overcome this problem, there is still a room to improve this issue. In this work, we study a weighted trace ratio by maximising the harmonic mean of the multiple objective reciprocals. To further improve the performance, we enforce the 2,1-norm to the developed objective function. Additionally, we propose an iterative algorithm to optimise this objective function. The proposed method avoids the domination problem of the largest objective, and guarantees that no objectives will be too small. This method can be more beneficial if the number of classes is large. The extensive experiments on different datasets show the effectiveness of our proposed method when compared with four state-of-the-art methods.
Original language | English |
---|---|
Title of host publication | The Thirty-Second AAAI Conference on Artificial Intelligence |
Editors | Sheila McIlraith, Kilian Weinberger |
Place of Publication | Palo Alto CA USA |
Publisher | Association for the Advancement of Artificial Intelligence (AAAI) |
Pages | 2746-2753 |
Number of pages | 8 |
ISBN (Electronic) | 9781577358008 |
Publication status | Published - 2018 |
Externally published | Yes |
Event | AAAI Conference on Artificial Intelligence 2018 - New Orleans, United States of America Duration: 2 Feb 2018 → 7 Feb 2018 Conference number: 32nd https://aaai.org/Conferences/AAAI-18/ |
Conference
Conference | AAAI Conference on Artificial Intelligence 2018 |
---|---|
Abbreviated title | AAAI 2018 |
Country/Territory | United States of America |
City | New Orleans |
Period | 2/02/18 → 7/02/18 |
Internet address |