Projects per year
Abstract
Membrane chromatography is recognised as a potential solution to streamline downstream processing for protein purification, where ion exchange membrane chromatography (IEMC) as a polishing step to remove impurities has been successfully demonstrated in small scales. Despite limited commercial adoption in large-scale production, the concept of IEMC attracts many interests and tremendous progress is made. To fill the review gap for advancements in the last decade, this article provides a timely analysis on key performance-determining aspects in IEMC systems. Modern laboratory-made membranes with polymeric chains of tuneable surface area and charge allow for high binding capacity (up to 10-fold higher than that of traditional resins) while simultaneously mitigating the loss of permeance due to the introduction of grafted layers up to 40%. Nevertheless, robust evaluation are yet to be conducted. Despite making equal contribution to binding, the review on process-related work was supported by only <1/3 of the cited articles, where a transition of empirical to mechanistic models was identified, enabling rationale system design and upscaling. The use of molecular simulation into binding studies reveals the roles of membrane properties but limited work was found. While highlighting disconnection between academic and commercial efforts, research gaps for future work were identified.
Original language | English |
---|---|
Article number | 120325 |
Number of pages | 22 |
Journal | Journal of Membrane Science |
Volume | 647 |
DOIs | |
Publication status | Published - 5 Apr 2022 |
Keywords
- Binding capacity
- Downstream bioprocessing
- Flow dynamics
- Ion exchange membrane chromatography
- Protein purification
Projects
- 1 Finished
-
ARC Research Hub for Energy-efficient Separation
Wang, H., Zhang, X., Duke, M. C., Hill, M., Leslie, G. L., Diniz da Costa, J. C., Gray, S. R., Nghiem, L., Millar, G., Kong, L., Liu, S., Shon, H. K., Le-Clech, P., Zhang, L., Hoadley, A., Smart, S., Dumee, L., Thornton, A. W., Ozcakmak, B., Bury, P., Stephen, G., Fane, A., Elimelech, M., Pan, B., Tao, S., Horton, A., Wu, X., Forbes, M., Hu, J., Song, H., Dixon, I., Holt, S. A., He, L., Williams, C., Hou, H., Shen, W., Wang, J., Gao, L., Davis, P., Pham, H., Muthukumarn, S., Bustamante, H. & Thang, S. H.
Barwon Region Water Corporation (trading as Barwon Water) (Victoria) , South East Water Corporation (trading as South East Water Ltd (SEWL) (Victoria), Tasmanian Water and Sewerage Corporation Pty Ltd (trading as Tas Water), Advanced Fuel Innovation Pty Ltd, CSL Behring (Australia), Yale University, 2D Water Pty Ltd, Activated Water Technologies Pty Ltd, Akvotek Pty Ltd, Bioactive Materials Pty Ltd, Australian Nuclear Science and Technology Organisation (ANSTO) , Arrow Bowen Pipeline Pty Ltd (trading as Arrow Energy), Baosteel Group Corporation, Ironwood Clean Energy Technologies Pty Limited (trading as: Carbon Technologies Australia), Shenzhen Innova Nanobody Company, Shanghai Boiler Works Co Limited, Shijiazhuang Chang’an Yucai Building Materials Ltd. Company, Zeolite Australia Pty Limited, University of Technology (UTS) Sydney
15/12/17 → 15/12/23
Project: Research