Towards automated analysis of rhetorical categories in students essay writings using Bloom's taxonomy

Sehrish Iqbal, Mladen Rakovic, Guanliang Chen, Tongguang Li, Rafael Ferreira Mello, Yizhou Fan, Giuseppe Fiorentino, Naif Radi Aljohani, Dragan Gasevic

Research output: Chapter in Book/Report/Conference proceedingConference PaperResearchpeer-review

6 Citations (Scopus)

Abstract

Essay writing has become one of the most common learning tasks assigned to students enrolled in various courses at different educational levels, owing to the growing demand for future professionals to effectively communicate information to an audience and develop a written product (i.e. essay). Evaluating a written product requires scorers who manually examine the existence of rhetorical categories, which is a time-consuming task. Machine Learning (ML) approaches have the potential to alleviate this challenge. As a result, several attempts have been made in the literature to automate the identification of rhetorical categories using Rhetorical Structure Theory (RST). However, RST do not provide information regarding students' cognitive level, which motivates the use of Bloom's Taxonomy. Therefore, in this research we propose to: i) investigate the extent to which classification of rhetorical categories can be automated based on Bloom's taxonomy by comparing the traditional ML classifiers with the pre-trained language model BERT, ii) explore the associations between rhetorical categories and writing performance. Our results showed that BERT model outperformed the traditional ML-based classifiers with 18% better accuracy, indicating it can be used in future analytics tool. Moreover, we found a statistical difference between the associations of rhetorical categories in low-achiever, medium-achiever and high-achiever groups which implies that rhetorical categories can be predictive of writing performance.

Original languageEnglish
Title of host publicationLAK 2023 Conference Proceedings - Towards Trustworthy Learning Analytics - The Thirteenth International Conference on Learning Analytics & Knowledge
EditorsIsabel Hilliger, Hassan Khosravi, Bart Rienties, Shane Dawson
Place of PublicationNew York NY USA
PublisherAssociation for Computing Machinery (ACM)
Pages418-429
Number of pages12
ISBN (Electronic)9781450398657
DOIs
Publication statusPublished - 2023
EventInternational Conference on Learning Analytics and Knowledge 2023 - Arlington, United States of America
Duration: 13 Mar 202317 Mar 2023
Conference number: 13th
https://dl.acm.org/doi/proceedings/10.1145/3576050 (Proceedings)
https://www.solaresearch.org/events/lak/lak23/ (Website)

Conference

ConferenceInternational Conference on Learning Analytics and Knowledge 2023
Abbreviated titleLAK 2023
Country/TerritoryUnited States of America
CityArlington
Period13/03/2317/03/23
Internet address

Keywords

  • epistemic network analysis
  • essay analysis
  • machine learning
  • Rhetorical structure

Cite this