Abstract
Recently, structured sparsity inducing based feature selection has become a hot topic in machine learning and pattern recognition. Most of the sparsity inducing feature selection methods are designed to rank all features by certain criterion and then select the k top ranked features, where k is an integer. However, the k top features are usually not the top k features and therefore maybe a suboptimal result. In this paper, we propose a novel supervised feature selection method to directly identify the top k features. The new method is formulated as a classic regularized least squares regression model with two groups of variables. The problem with respect to one group of the variables turn out to be a 0-1 integer programming, which had been considered very hard to solve. To address this, we utilize an efficient optimization method to solve the integer programming, which first replaces the discrete 0-1 constraints with two continuous constraints and then utilizes the alternating direction method of multipliers to optimize the equivalent problem. The obtained result is the top subset with k features under the proposed criterion rather than the subset of k top features. Experiments have been conducted on benchmark data sets to show the effectiveness of proposed method.
Original language | English |
---|---|
Title of host publication | Proceedings of the 26th International Joint Conference on Artificial Intelligence |
Editors | Carles Sierra |
Place of Publication | Marina del Rey CA USA |
Publisher | Association for the Advancement of Artificial Intelligence (AAAI) |
Pages | 1646-1653 |
Number of pages | 8 |
ISBN (Electronic) | 9780999241103 |
ISBN (Print) | 9780999241110 |
DOIs | |
Publication status | Published - 2017 |
Externally published | Yes |
Event | International Joint Conference on Artificial Intelligence 2017 - Melbourne, Australia Duration: 19 Aug 2017 → 25 Aug 2017 Conference number: 26th https://ijcai-17.org/ https://www.ijcai.org/Proceedings/2017/ (Proceedings) |
Conference
Conference | International Joint Conference on Artificial Intelligence 2017 |
---|---|
Abbreviated title | IJCAI 2017 |
Country/Territory | Australia |
City | Melbourne |
Period | 19/08/17 → 25/08/17 |
Internet address |
Keywords
- Machine Learning
- Data Mining
- Feature Selection
- Construction