TY - JOUR
T1 - Toll-like receptor 2 regulates metabolic reprogramming in gastric cancer via superoxide dismutase 2
AU - Liu, You Dong
AU - Yu, Liang
AU - Ying, Le
AU - Balic, Jesse
AU - Gao, Hugh
AU - Deng, Nian Tao
AU - West, Alison
AU - Yan, Feng
AU - Ji, Cheng Bo
AU - Gough, Daniel
AU - Tan, Patrick
AU - Jenkins, Brendan J.
AU - Li, Ji Kun
PY - 2019/6/15
Y1 - 2019/6/15
N2 - Toll-like receptors (TLRs) play critical roles in host defense after recognition of conserved microbial- and host-derived components, and their dysregulation is a common feature of various inflammation-associated cancers, including gastric cancer (GC). Despite the recent recognition that metabolic reprogramming is a hallmark of cancer, the molecular effectors of altered metabolism during tumorigenesis remain unclear. Here, using bioenergetics function assays on human GC cells, we reveal that ligand-induced activation of TLR2, predominantly through TLR1/2 heterodimer, augments both oxidative phosphorylation (OXPHOS) and glycolysis, with a bias toward glycolytic activity. Notably, DNA microarray-based expression profiling of human cancer cells stimulated with TLR2 ligands demonstrated significant enrichment of gene-sets for oncogenic pathways previously implicated in metabolic regulation, including reactive oxygen species (ROS), p53 and Myc. Moreover, the redox gene encoding the manganese-dependent mitochondrial enzyme, superoxide dismutase (SOD)2, was strongly induced at the mRNA and protein levels by multiple signaling pathways downstream of TLR2, namely JAK-STAT3, JNK MAPK and NF-κB. Furthermore, siRNA-mediated suppression of SOD2 ameliorated the TLR2-induced metabolic shift in human GC cancer cells. Importantly, patient-derived tissue microarrays and bioinformatics interrogation of clinical datasets indicated that upregulated expression of TLR2 and SOD2 were significantly correlated in human GC, and the TLR2-SOD2 axis was associated with multiple clinical parameters of advanced stage disease, including distant metastasis, microvascular invasion and stage, as well as poor survival. Collectively, our findings reveal a novel TLR2-SOD2 axis as a potential biomarker for therapy and prognosis in cancer.
AB - Toll-like receptors (TLRs) play critical roles in host defense after recognition of conserved microbial- and host-derived components, and their dysregulation is a common feature of various inflammation-associated cancers, including gastric cancer (GC). Despite the recent recognition that metabolic reprogramming is a hallmark of cancer, the molecular effectors of altered metabolism during tumorigenesis remain unclear. Here, using bioenergetics function assays on human GC cells, we reveal that ligand-induced activation of TLR2, predominantly through TLR1/2 heterodimer, augments both oxidative phosphorylation (OXPHOS) and glycolysis, with a bias toward glycolytic activity. Notably, DNA microarray-based expression profiling of human cancer cells stimulated with TLR2 ligands demonstrated significant enrichment of gene-sets for oncogenic pathways previously implicated in metabolic regulation, including reactive oxygen species (ROS), p53 and Myc. Moreover, the redox gene encoding the manganese-dependent mitochondrial enzyme, superoxide dismutase (SOD)2, was strongly induced at the mRNA and protein levels by multiple signaling pathways downstream of TLR2, namely JAK-STAT3, JNK MAPK and NF-κB. Furthermore, siRNA-mediated suppression of SOD2 ameliorated the TLR2-induced metabolic shift in human GC cancer cells. Importantly, patient-derived tissue microarrays and bioinformatics interrogation of clinical datasets indicated that upregulated expression of TLR2 and SOD2 were significantly correlated in human GC, and the TLR2-SOD2 axis was associated with multiple clinical parameters of advanced stage disease, including distant metastasis, microvascular invasion and stage, as well as poor survival. Collectively, our findings reveal a novel TLR2-SOD2 axis as a potential biomarker for therapy and prognosis in cancer.
KW - gastric cancer
KW - metabolism
KW - superoxide dismutase 2
KW - toll-like receptor 2
UR - http://www.scopus.com/inward/record.url?scp=85059551777&partnerID=8YFLogxK
U2 - 10.1002/ijc.32060
DO - 10.1002/ijc.32060
M3 - Article
AN - SCOPUS:85059551777
VL - 144
SP - 3056
EP - 3069
JO - International Journal of Cancer
JF - International Journal of Cancer
SN - 0020-7136
IS - 12
ER -