TY - JOUR
T1 - TILTomorrow today
T2 - dynamic factors predicting changes in intracranial pressure treatment intensity after traumatic brain injury
AU - Bhattacharyay, Shubhayu
AU - van Leeuwen, Florian D.
AU - Beqiri, Erta
AU - Åkerlund, Cecilia
AU - Wilson, Lindsay
AU - Steyerberg, Ewout W.
AU - Nelson, David W.
AU - Maas, Andrew I.R.
AU - Menon, David
AU - Ercole, Ari
AU - Zoerle, Tommaso
AU - Ziverte, Agate
AU - Zelinkova, Veronika
AU - Zeiler, Frederick A.
AU - Younsi, Alexander
AU - Ylén, Peter
AU - Yang, Zhihui
AU - Wolf, Stefan
AU - Winzeck, Stefan
AU - Williams, Guy
AU - Wiegers, Eveline
AU - Whitehouse, Daniel
AU - Wang, Kevin K.W.
AU - Vulekovic, Petar
AU - Voormolen, Daphne
AU - von Steinbüchel, Nicole
AU - Volovici, Victor
AU - Vilcinis, Rimantas
AU - Vik, Anne
AU - Vespa, Paul M.
AU - Verheyden, Jan
AU - Velt, Kimberley
AU - Vega, Emmanuel
AU - Vargiolu, Alessia
AU - van Wijk, Roel P.J.
AU - Vyvere, Thijs Vande
AU - van Veen, Ernest
AU - van Heugten, Caroline
AU - Van Hecke, Wim
AU - van Essen, Thomas A.
AU - van Erp, Inge A.M.
AU - van Dijck, Jeroen T.J.M.
AU - van der Naalt, Joukje
AU - Van der Steen, Gregory
AU - van der Jagt, Mathieu
AU - Vámos, Zoltán
AU - Valeinis, Egils
AU - Vallance, Shirley
AU - Vajkoczy, Peter
AU - Unterberg, Andreas
AU - Tudora, Cristina Maria
AU - Trapani, Tony
AU - Tolias, Christos
AU - Timmers, Marjolein
AU - Tibboel, Dick
AU - Thomas, Matt
AU - Theadom, Alice
AU - Tenovuo, Olli
AU - Ao, Braden Te
AU - Thibaut, Aurore
AU - Taylor, Mark Steven
AU - Tamosuitis, Tomas
AU - Tamás, Viktória
AU - Takala, Riikka
AU - Sundström, Nina
AU - Stocchetti, Nino
AU - Stewart, William
AU - Stevens, Robert
AU - Stanworth, Simon
AU - Stamatakis, Emmanuel
AU - Sorinola, Abayomi
AU - Smielewski, Peter
AU - Skandsen, Toril
AU - Singh, Ranjit D.
AU - Sewalt, Charlie
AU - Schwendenwein, Elisabeth
AU - Schou, Rico Frederik
AU - Schoonman, Guus
AU - Schoechl, Herbert
AU - Schmidt, Silke
AU - Schäfer, Nadine
AU - Sandor, Janos
AU - Sanchez-Porras, Renan
AU - Sakowitz, Oliver
AU - Sahuquillo, Juan
AU - Rusnák, Martin
AU - Rueckert, Daniel
AU - Rossi, Sandra
AU - Rossaint, Rolf
AU - Rosenthal, Guy
AU - Rosenlund, Christina
AU - Rosenfeld, Jeffrey V.
AU - Rosand, Jonathan
AU - Roise, Olav
AU - Roe, Cecilie
AU - Rocka, Saulius
AU - Ripatti, Samuli
AU - Richter, Sophie
AU - Richardson, Sylvia
AU - Rhodes, Jonathan
AU - Helmrich, Isabel Retel
AU - Rambadagalla, Malinka
AU - Raj, Rahul
AU - Ragauskas, Arminas
AU - Radoi, Andreea
AU - Puybasset, Louis
AU - Posti, Jussi P.
AU - Pomposo, Inigo
AU - Polinder, Suzanne
AU - Ples, Horia
AU - Pisica, Dana
AU - Pirinen, Matti
AU - Piippo-Karjalainen, Anna
AU - Peul, Wilco
AU - Persona, Paolo
AU - Perlbarg, Vincent
AU - Perera, Natascha
AU - Payen, Jean François
AU - Parizel, Paul M.
AU - Palotie, Aarno
AU - Ortolano, Fabrizio
AU - Oresic, Matej
AU - Olubukola, Otesile
AU - Nyirádi, József
AU - Nieboer, Daan
AU - Newcombe, Virginia
AU - Nelson, David
AU - Negru, Ancuta
AU - Murray, Lynnette
AU - Muraleedharan, Visakh
AU - Misset, Benoit
AU - Mikolic, Ana
AU - Menovsky, Tomas
AU - Menon, David
AU - Melegh, Béla
AU - McMahon, Catherine
AU - Mattern, Julia
AU - Maréchal, Hugues
AU - Martino, Costanza
AU - Manley, Geoffrey
AU - Manara, Alex
AU - Majdan, Marek
AU - Maegele, Marc
AU - Castaño-León, Ana M.
AU - Lingsma, Hester
AU - Lightfoot, Roger
AU - Levi, Leon
AU - Lejeune, Aurelie
AU - Legrand, Valerie
AU - Lefering, Rolf
AU - Ledoux, Didier
AU - Lecky, Fiona
AU - Laureys, Steven
AU - Lanyon, Linda
AU - Lagares, Alfonso
AU - Kowark, Ana
AU - Kovács, Noémi
AU - Koskinen, Lars Owe
AU - Kornaropoulos, Evgenios
AU - Kondziella, Daniel
AU - Kompanje, Erwin
AU - Kolias, Angelos G.
AU - Karan, Mladen
AU - Jones, Kelly
AU - Johnson, Faye
AU - Jiang, Ji Yao
AU - Jarrett, Mike
AU - Jankowski, Stefan
AU - Jacobs, Bram
AU - Hutchinson, Peter J.
AU - Huijben, Jilske
AU - Horton, Lindsay
AU - Helseth, Eirik
AU - Helbok, Raimund
AU - Haitsma, Iain
AU - Haagsma, Juanita A.
AU - Gupta, Deepak
AU - Gruen, Russell L.
AU - Grossi, Francesca
AU - Gravesteijn, Benjamin
AU - Gratz, Johannes
AU - Gomez, Pedro A.
AU - Golubovic, Jagoš
AU - Glocker, Ben
AU - Giga, Lelde
AU - Ghuysen, Alexandre
AU - George, Pradeep
AU - Gao, Guoyi
AU - Gantner, Dashiell
AU - Galanaud, Damien
AU - Gagliardo, Pablo
AU - Furmanov, Alex
AU - Frisvold, Shirin
AU - Foks, Kelly
AU - Feigin, Valery L.
AU - Fabricius, Martin
AU - Ezer, Erzsébet
AU - Esser, Patrick
AU - Dulière, Guy Loup
AU - Dreier, Jens
AU - Donoghue, Emma
AU - Dixit, Abhishek
AU - Đilvesi, Đula
AU - Depreitere, Bart
AU - Boogert, Hugo den
AU - Corte, Francesco Della
AU - Degos, Vincent
AU - De Keyser, Véronique
AU - Dawes, Helen
AU - Dark, Paul
AU - Dahyot-Fizelier, Claire
AU - Czosnyka, Marek
AU - Czeiter, Endre
AU - Curry, Nicola
AU - Čović, Amra
AU - Correia, Marta
AU - Cooper, Jamie D.
AU - Coles, Jonathan
AU - Coburn, Mark
AU - Clusmann, Hans
AU - Citerio, Giuseppe
AU - Chieregato, Arturo
AU - Chevallard, Giorgio
AU - Cavallo, Simona
AU - Carbonara, Marco
AU - Lozano, Guillermo Carbayo
AU - Cameron, Peter
AU - Calvi, Maria Rosa
AU - Calappi, Emiliana
AU - Caccioppola, Alessio
AU - Cabeleira, Manuel
AU - Bullinger, Monika
AU - Buki, Andras
AU - Brorsson, Camilla
AU - Brooker, Joanne
AU - Brinck, Vibeke
AU - Brazinova, Alexandra
AU - Bragge, Peter
AU - Blaabjerg, Morten
AU - Beretta, Luigi
AU - Berardino, Maurizio
AU - Benali, Habib
AU - Belli, Antonio
AU - Bellander, Bo Michael
AU - Beer, Ronny
AU - Beauvais, Romuald
AU - Barzó, Pál
AU - Bartels, Ronald
AU - Azzolini, Maria Luisa
AU - Azouvi, Philippe
AU - the CENTER-TBI investigators and participants
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2025/1/2
Y1 - 2025/1/2
N2 - Practices for controlling intracranial pressure (ICP) in traumatic brain injury (TBI) patients admitted to the intensive care unit (ICU) vary considerably between centres. To help understand the rational basis for such variance in care, this study aims to identify the patient-level predictors of changes in ICP management. We extracted all heterogeneous data (2008 pre-ICU and ICU variables) collected from a prospective cohort (n = 844, 51 ICUs) of ICP-monitored TBI patients in the Collaborative European NeuroTrauma Effectiveness Research in TBI study. We developed the TILTomorrow modelling strategy, which leverages recurrent neural networks to map a token-embedded time series representation of all variables (including missing values) to an ordinal, dynamic prediction of the following day’s five-category therapy intensity level (TIL(Basic)) score. With 20 repeats of fivefold cross-validation, we trained TILTomorrow on different variable sets and applied the TimeSHAP (temporal extension of SHapley Additive exPlanations) algorithm to estimate variable contributions towards predictions of next-day changes in TIL(Basic). Based on Somers’ Dxy, the full range of variables explained 68% (95% CI 65–72%) of the ordinal variation in next-day changes in TIL(Basic) on day one and up to 51% (95% CI 45–56%) thereafter, when changes in TIL(Basic) became less frequent. Up to 81% (95% CI 78–85%) of this explanation could be derived from non-treatment variables (i.e., markers of pathophysiology and injury severity), but the prior trajectory of ICU management significantly improved prediction of future de-escalations in ICP-targeted treatment. Whilst there was no significant difference in the predictive discriminability (i.e., area under receiver operating characteristic curve) between next-day escalations (0.80 [95% CI 0.77–0.84]) and de-escalations (0.79 [95% CI 0.76–0.82]) in TIL(Basic) after day two, we found specific predictor effects to be more robust with de-escalations. The most important predictors of day-to-day changes in ICP management included preceding treatments, age, space-occupying lesions, ICP, metabolic derangements, and neurological function. Serial protein biomarkers were also important and may serve a useful role in the clinical armamentarium for assessing therapeutic needs. Approximately half of the ordinal variation in day-to-day changes in TIL(Basic) after day two remained unexplained, underscoring the significant contribution of unmeasured factors or clinicians’ personal preferences in ICP treatment. At the same time, specific dynamic markers of pathophysiology associated strongly with changes in treatment intensity and, upon mechanistic investigation, may improve the timing and personalised targeting of future care.
AB - Practices for controlling intracranial pressure (ICP) in traumatic brain injury (TBI) patients admitted to the intensive care unit (ICU) vary considerably between centres. To help understand the rational basis for such variance in care, this study aims to identify the patient-level predictors of changes in ICP management. We extracted all heterogeneous data (2008 pre-ICU and ICU variables) collected from a prospective cohort (n = 844, 51 ICUs) of ICP-monitored TBI patients in the Collaborative European NeuroTrauma Effectiveness Research in TBI study. We developed the TILTomorrow modelling strategy, which leverages recurrent neural networks to map a token-embedded time series representation of all variables (including missing values) to an ordinal, dynamic prediction of the following day’s five-category therapy intensity level (TIL(Basic)) score. With 20 repeats of fivefold cross-validation, we trained TILTomorrow on different variable sets and applied the TimeSHAP (temporal extension of SHapley Additive exPlanations) algorithm to estimate variable contributions towards predictions of next-day changes in TIL(Basic). Based on Somers’ Dxy, the full range of variables explained 68% (95% CI 65–72%) of the ordinal variation in next-day changes in TIL(Basic) on day one and up to 51% (95% CI 45–56%) thereafter, when changes in TIL(Basic) became less frequent. Up to 81% (95% CI 78–85%) of this explanation could be derived from non-treatment variables (i.e., markers of pathophysiology and injury severity), but the prior trajectory of ICU management significantly improved prediction of future de-escalations in ICP-targeted treatment. Whilst there was no significant difference in the predictive discriminability (i.e., area under receiver operating characteristic curve) between next-day escalations (0.80 [95% CI 0.77–0.84]) and de-escalations (0.79 [95% CI 0.76–0.82]) in TIL(Basic) after day two, we found specific predictor effects to be more robust with de-escalations. The most important predictors of day-to-day changes in ICP management included preceding treatments, age, space-occupying lesions, ICP, metabolic derangements, and neurological function. Serial protein biomarkers were also important and may serve a useful role in the clinical armamentarium for assessing therapeutic needs. Approximately half of the ordinal variation in day-to-day changes in TIL(Basic) after day two remained unexplained, underscoring the significant contribution of unmeasured factors or clinicians’ personal preferences in ICP treatment. At the same time, specific dynamic markers of pathophysiology associated strongly with changes in treatment intensity and, upon mechanistic investigation, may improve the timing and personalised targeting of future care.
KW - Data mining
KW - Intensive care unit
KW - Intracranial pressure
KW - Machine learning
KW - Therapy intensity level
KW - Traumatic brain injury
UR - http://www.scopus.com/inward/record.url?scp=85213945582&partnerID=8YFLogxK
U2 - 10.1038/s41598-024-83862-x
DO - 10.1038/s41598-024-83862-x
M3 - Article
C2 - 39747195
AN - SCOPUS:85213945582
SN - 2045-2322
VL - 15
JO - Scientific Reports
JF - Scientific Reports
M1 - 95
ER -