Tilianin: A potential natural lead molecule for new drug design and development for the treatment of cardiovascular disorders

Farrah Syazana Khattulanuar, Mahendran Sekar, Shivkanya Fuloria, Siew Hua Gan, Nur Najihah Izzati Mat Rani, Subban Ravi, Kumarappan Chidambaram, M. Yasmin Begum, Abul Kalam Azad, Srikanth Jeyabalan, Arulmozhi Dhiravidamani, Lakshmi Thangavelu, Pei Teng Lum, Vetriselvan Subramaniyan, Yuan Seng Wu, Kathiresan V. Sathasivam, Neeraj Kumar Fuloria

Research output: Contribution to journalReview ArticleResearchpeer-review

15 Citations (Scopus)

Abstract

Cardiovascular disorders (CVDs) are the leading risk factor for death worldwide, and research into the processes and treatment regimens has received a lot of attention. Tilianin is a flavonoid glycoside that can be found in a wide range of medicinal plants and is most commonly obtained from Dracocephalum moldavica. Due to its extensive range of biological actions, it has become a well-known molecule in recent years. In particular, numerous studies have shown that tilianin has cardioprotective properties against CVDs. Hence, this review summarises tilianin’s preclinical research in CVDs, as well as its mechanism of action and opportunities in future drug development. The physicochemical and drug-likeness properties, as well as the toxicity profile, were also highlighted. Tilianin can be a natural lead molecule in the therapy of CVDs such as coronary heart disease, angina pectoris, hypertension, and myocardial ischemia, according to scientific evidence. Free radical scavenging, inflammation control, mitochondrial function regulation, and related signalling pathways are all thought to play a role in tilianin’s cardioprotective actions. Finally, we discuss tilianin-derived compounds, as well as the limitations and opportunities of using tilianin as a lead molecule in drug development for CVDs. Overall, the scientific evidence presented in this review supports that tilianin and its derivatives could be used as a lead molecule in CVD drug development initiatives.

Original languageEnglish
Article number673
Number of pages20
JournalMolecules
Volume27
Issue number3
DOIs
Publication statusPublished - 1 Feb 2022

Keywords

  • Cardioprotection
  • Cardiovascular disorders
  • Drug development
  • Drug-likeness
  • Molecular mechanism
  • Tilianin

Cite this