Thymic stromal lymphopoietin plays divergent roles in murine models of atopic and nonatopic airway inflammation

K. Yadava, J. Massacand, I. Mosconi, L. P. Nicod, N. L. Harris, B. J. Marsland

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Background: Thymic stromal lymphopoietin (TSLP) is a cytokine primarily produced by epithelial cells, which has been shown to be a potent inducer of T-helper 2 (Th2)-type responses. However, TSLP has pleiotropic effects upon immune cells, and although extensively studied in the context of atopic asthma, its relevance as a therapeutic target and its role in the pathogenesis of nonatopic asthma remains unknown. We sought to investigate the role of TSLP in atopic, nonatopic and viral-induced exacerbations of pulmonary inflammation.

Methods: Using stringently defined murine models of atopic, nonatopic and virally exacerbated forms of pulmonary inflammation, we compared inflammatory responses of C57BL/6 wild-type (WT) and TSLP receptor-deficient (TSLPR KO) mice.

Results: Thymic stromal lymphopoietin receptor (TSLPR) signaling was crucial for the development of atopic asthma. Specifically, TSLPR signaling to lung recruited CD4+ T cells enhanced eosinophilia, goblet cell hyperplasia, and overall inflammation within the airways. In contrast, the absence of TSLPR signaling was associated with strikingly exaggerated pulmonary neutrophilic inflammation in a nonatopic model of airway inflammation. The inflammation was associated with excessive levels of interleukin (IL)-17A in the lungs, indicating that TSLP negatively regulates IL-17A. In addition, in a model of influenza-induced exacerbation of atopic airway inflammation, the absence of TSLPR signaling also led to exaggerated neutrophilic inflammation.

Conclusion: Thymic stromal lymphopoietin plays divergent roles in the pathogenesis of atopic and nonatopic asthma phenotypes by either enhancing Th2 responses or curtailing T-helper 17 responses. These findings raise important caveats for the design of therapeutic interventions targeting TSLP in asthma.

Original languageEnglish
Pages (from-to)1333-1342
Number of pages10
JournalAllergy
Volume69
Issue number10
DOIs
Publication statusPublished - 1 Jan 2014

Cite this

Yadava, K. ; Massacand, J. ; Mosconi, I. ; Nicod, L. P. ; Harris, N. L. ; Marsland, B. J. / Thymic stromal lymphopoietin plays divergent roles in murine models of atopic and nonatopic airway inflammation. In: Allergy. 2014 ; Vol. 69, No. 10. pp. 1333-1342.
@article{593be7bdc04245fe8be96cc1d2fd5404,
title = "Thymic stromal lymphopoietin plays divergent roles in murine models of atopic and nonatopic airway inflammation",
abstract = "Background: Thymic stromal lymphopoietin (TSLP) is a cytokine primarily produced by epithelial cells, which has been shown to be a potent inducer of T-helper 2 (Th2)-type responses. However, TSLP has pleiotropic effects upon immune cells, and although extensively studied in the context of atopic asthma, its relevance as a therapeutic target and its role in the pathogenesis of nonatopic asthma remains unknown. We sought to investigate the role of TSLP in atopic, nonatopic and viral-induced exacerbations of pulmonary inflammation.Methods: Using stringently defined murine models of atopic, nonatopic and virally exacerbated forms of pulmonary inflammation, we compared inflammatory responses of C57BL/6 wild-type (WT) and TSLP receptor-deficient (TSLPR KO) mice.Results: Thymic stromal lymphopoietin receptor (TSLPR) signaling was crucial for the development of atopic asthma. Specifically, TSLPR signaling to lung recruited CD4+ T cells enhanced eosinophilia, goblet cell hyperplasia, and overall inflammation within the airways. In contrast, the absence of TSLPR signaling was associated with strikingly exaggerated pulmonary neutrophilic inflammation in a nonatopic model of airway inflammation. The inflammation was associated with excessive levels of interleukin (IL)-17A in the lungs, indicating that TSLP negatively regulates IL-17A. In addition, in a model of influenza-induced exacerbation of atopic airway inflammation, the absence of TSLPR signaling also led to exaggerated neutrophilic inflammation.Conclusion: Thymic stromal lymphopoietin plays divergent roles in the pathogenesis of atopic and nonatopic asthma phenotypes by either enhancing Th2 responses or curtailing T-helper 17 responses. These findings raise important caveats for the design of therapeutic interventions targeting TSLP in asthma.",
author = "K. Yadava and J. Massacand and I. Mosconi and Nicod, {L. P.} and Harris, {N. L.} and Marsland, {B. J.}",
year = "2014",
month = "1",
day = "1",
doi = "10.1111/all.12469",
language = "English",
volume = "69",
pages = "1333--1342",
journal = "Allergy",
issn = "0105-4538",
publisher = "Wiley-Blackwell",
number = "10",

}

Thymic stromal lymphopoietin plays divergent roles in murine models of atopic and nonatopic airway inflammation. / Yadava, K.; Massacand, J.; Mosconi, I.; Nicod, L. P.; Harris, N. L.; Marsland, B. J.

In: Allergy, Vol. 69, No. 10, 01.01.2014, p. 1333-1342.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Thymic stromal lymphopoietin plays divergent roles in murine models of atopic and nonatopic airway inflammation

AU - Yadava, K.

AU - Massacand, J.

AU - Mosconi, I.

AU - Nicod, L. P.

AU - Harris, N. L.

AU - Marsland, B. J.

PY - 2014/1/1

Y1 - 2014/1/1

N2 - Background: Thymic stromal lymphopoietin (TSLP) is a cytokine primarily produced by epithelial cells, which has been shown to be a potent inducer of T-helper 2 (Th2)-type responses. However, TSLP has pleiotropic effects upon immune cells, and although extensively studied in the context of atopic asthma, its relevance as a therapeutic target and its role in the pathogenesis of nonatopic asthma remains unknown. We sought to investigate the role of TSLP in atopic, nonatopic and viral-induced exacerbations of pulmonary inflammation.Methods: Using stringently defined murine models of atopic, nonatopic and virally exacerbated forms of pulmonary inflammation, we compared inflammatory responses of C57BL/6 wild-type (WT) and TSLP receptor-deficient (TSLPR KO) mice.Results: Thymic stromal lymphopoietin receptor (TSLPR) signaling was crucial for the development of atopic asthma. Specifically, TSLPR signaling to lung recruited CD4+ T cells enhanced eosinophilia, goblet cell hyperplasia, and overall inflammation within the airways. In contrast, the absence of TSLPR signaling was associated with strikingly exaggerated pulmonary neutrophilic inflammation in a nonatopic model of airway inflammation. The inflammation was associated with excessive levels of interleukin (IL)-17A in the lungs, indicating that TSLP negatively regulates IL-17A. In addition, in a model of influenza-induced exacerbation of atopic airway inflammation, the absence of TSLPR signaling also led to exaggerated neutrophilic inflammation.Conclusion: Thymic stromal lymphopoietin plays divergent roles in the pathogenesis of atopic and nonatopic asthma phenotypes by either enhancing Th2 responses or curtailing T-helper 17 responses. These findings raise important caveats for the design of therapeutic interventions targeting TSLP in asthma.

AB - Background: Thymic stromal lymphopoietin (TSLP) is a cytokine primarily produced by epithelial cells, which has been shown to be a potent inducer of T-helper 2 (Th2)-type responses. However, TSLP has pleiotropic effects upon immune cells, and although extensively studied in the context of atopic asthma, its relevance as a therapeutic target and its role in the pathogenesis of nonatopic asthma remains unknown. We sought to investigate the role of TSLP in atopic, nonatopic and viral-induced exacerbations of pulmonary inflammation.Methods: Using stringently defined murine models of atopic, nonatopic and virally exacerbated forms of pulmonary inflammation, we compared inflammatory responses of C57BL/6 wild-type (WT) and TSLP receptor-deficient (TSLPR KO) mice.Results: Thymic stromal lymphopoietin receptor (TSLPR) signaling was crucial for the development of atopic asthma. Specifically, TSLPR signaling to lung recruited CD4+ T cells enhanced eosinophilia, goblet cell hyperplasia, and overall inflammation within the airways. In contrast, the absence of TSLPR signaling was associated with strikingly exaggerated pulmonary neutrophilic inflammation in a nonatopic model of airway inflammation. The inflammation was associated with excessive levels of interleukin (IL)-17A in the lungs, indicating that TSLP negatively regulates IL-17A. In addition, in a model of influenza-induced exacerbation of atopic airway inflammation, the absence of TSLPR signaling also led to exaggerated neutrophilic inflammation.Conclusion: Thymic stromal lymphopoietin plays divergent roles in the pathogenesis of atopic and nonatopic asthma phenotypes by either enhancing Th2 responses or curtailing T-helper 17 responses. These findings raise important caveats for the design of therapeutic interventions targeting TSLP in asthma.

UR - http://www.scopus.com/inward/record.url?scp=84907958925&partnerID=8YFLogxK

U2 - 10.1111/all.12469

DO - 10.1111/all.12469

M3 - Article

VL - 69

SP - 1333

EP - 1342

JO - Allergy

JF - Allergy

SN - 0105-4538

IS - 10

ER -