Thermohaline mixing in super-AGB stars

Lionel Siess

Research output: Contribution to journalArticleResearchpeer-review

35 Citations (Scopus)


Aims. We present the first study of the effects of thermohaline mixing on the structure and evolution of solar-composition super-AGB (SAGB) stars in the mass range 9a??11 M . Methods. We developed and analyzed stellar models taking into account thermohaline mixing and varying mixing efficiencies. Results. In SAGB stars, thermohaline mixing becomes important after carbon has been ignited off-center and it affects significantly the propagation of the flame. In the radiative layers located below the convective carbon-burning zone, a molecular weight inversion is created which allows the efficient transport of chemicals. The outward diffusion of 12C from the CO-rich core into the flame, depletes the burning front of fuel and causes the extinction of the flame before it reaches the center. As a consequence the amount of unburnt carbon can be as high as 2a??5 in mass at the center of the star. During the subsequent thermally pulsing SAGB phase, the high temperature at the base of the convective envelope prevents the development of thermohaline instabilities associated with3He burning as found in low-mass red giant stars. Conclusions. In contrast to the case of low-mass RGB stars, thermohaline mixing is unable to alter the surface composition of SAGB stars. We also emphasize that if the SAGB star evolves into an electron-capture supernovae, the 12C remaining in the core may alter the hydrodynamical explosion and modify the explosive nucleosynthesis.
Original languageEnglish
Pages (from-to)463 - 468
Number of pages6
JournalAstronomy & Astrophysics
Issue number2
Publication statusPublished - 2009

Cite this