Thermo-responsiveness and biocompatibility of star-shaped poly[2-(dimethylamino)ethyl methacrylate]-b-poly(sulfobetaine methacrylate) grafted on a β-cyclodextrin core

Mingming Zhang, Wei Shen, Qingqing Xiong, Hongwei Wang, Zhimin Zhou, Wenjuan Chen, Qiqing Zhang

Research output: Contribution to journalArticleResearchpeer-review

19 Citations (Scopus)

Abstract

Star-shaped thermo-responsive block copolymers were synthesized by atom transfer radical polymerization (ATRP) of a hydrophilic cationic monomer (2-(dimethylamino)ethyl methacrylate) (DMAEMA) and a zwitterionic monomer (sulfobetaine methacrylate) (SBMA) from cyclodextrin with multi-initiator sites. These star polymers with different arm lengths and arm densities were characterized by 1H NMR and GPC. Thermo-responsive behaviors of the star polymers were investigated not only at different pH values, but also at different NaCl concentrations. The size and morphology of the star polymers and their aggregates were measured by dynamic light scattering and transmission electron microscopy. The star polymers showed only upper critical solution temperature (UCST) behavior, since zwitterionic PSBMA outer blocks shielded the lower critical solution temperature (LCST) behavior of PDMAEMA midblocks. However, PDMAEMA blocks had significant influence on the thermo-induced associations of the star polymers, and resulted in a tunable critical aggregation temperature with varying arm density or pH value of solution. Moreover, enhanced thermo-responsive behavior was also obtained at NaCl concentrations up to more than 20 mM, which is much higher than those reported before. Finally, biocompatibility evaluations showed that the star polymers could effectively reduce the adsorption of BSA in PBS solution and had insignificant cytotoxicity to MCF-7 cells. These results demonstrate they are good candidates for potential applications in biomedically relevant fields. This journal is

Original languageEnglish
Pages (from-to)28133-28140
Number of pages8
JournalRSC Advances
Volume5
Issue number36
DOIs
Publication statusPublished - 2015
Externally publishedYes

Cite this

Zhang, Mingming ; Shen, Wei ; Xiong, Qingqing ; Wang, Hongwei ; Zhou, Zhimin ; Chen, Wenjuan ; Zhang, Qiqing. / Thermo-responsiveness and biocompatibility of star-shaped poly[2-(dimethylamino)ethyl methacrylate]-b-poly(sulfobetaine methacrylate) grafted on a β-cyclodextrin core. In: RSC Advances. 2015 ; Vol. 5, No. 36. pp. 28133-28140.
@article{e940ed2986e743feb90c2155f1f4ae88,
title = "Thermo-responsiveness and biocompatibility of star-shaped poly[2-(dimethylamino)ethyl methacrylate]-b-poly(sulfobetaine methacrylate) grafted on a β-cyclodextrin core",
abstract = "Star-shaped thermo-responsive block copolymers were synthesized by atom transfer radical polymerization (ATRP) of a hydrophilic cationic monomer (2-(dimethylamino)ethyl methacrylate) (DMAEMA) and a zwitterionic monomer (sulfobetaine methacrylate) (SBMA) from cyclodextrin with multi-initiator sites. These star polymers with different arm lengths and arm densities were characterized by 1H NMR and GPC. Thermo-responsive behaviors of the star polymers were investigated not only at different pH values, but also at different NaCl concentrations. The size and morphology of the star polymers and their aggregates were measured by dynamic light scattering and transmission electron microscopy. The star polymers showed only upper critical solution temperature (UCST) behavior, since zwitterionic PSBMA outer blocks shielded the lower critical solution temperature (LCST) behavior of PDMAEMA midblocks. However, PDMAEMA blocks had significant influence on the thermo-induced associations of the star polymers, and resulted in a tunable critical aggregation temperature with varying arm density or pH value of solution. Moreover, enhanced thermo-responsive behavior was also obtained at NaCl concentrations up to more than 20 mM, which is much higher than those reported before. Finally, biocompatibility evaluations showed that the star polymers could effectively reduce the adsorption of BSA in PBS solution and had insignificant cytotoxicity to MCF-7 cells. These results demonstrate they are good candidates for potential applications in biomedically relevant fields. This journal is",
author = "Mingming Zhang and Wei Shen and Qingqing Xiong and Hongwei Wang and Zhimin Zhou and Wenjuan Chen and Qiqing Zhang",
year = "2015",
doi = "10.1039/c5ra02115d",
language = "English",
volume = "5",
pages = "28133--28140",
journal = "RSC Advances",
issn = "2046-2069",
publisher = "The Royal Society of Chemistry",
number = "36",

}

Thermo-responsiveness and biocompatibility of star-shaped poly[2-(dimethylamino)ethyl methacrylate]-b-poly(sulfobetaine methacrylate) grafted on a β-cyclodextrin core. / Zhang, Mingming; Shen, Wei; Xiong, Qingqing; Wang, Hongwei; Zhou, Zhimin; Chen, Wenjuan; Zhang, Qiqing.

In: RSC Advances, Vol. 5, No. 36, 2015, p. 28133-28140.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Thermo-responsiveness and biocompatibility of star-shaped poly[2-(dimethylamino)ethyl methacrylate]-b-poly(sulfobetaine methacrylate) grafted on a β-cyclodextrin core

AU - Zhang, Mingming

AU - Shen, Wei

AU - Xiong, Qingqing

AU - Wang, Hongwei

AU - Zhou, Zhimin

AU - Chen, Wenjuan

AU - Zhang, Qiqing

PY - 2015

Y1 - 2015

N2 - Star-shaped thermo-responsive block copolymers were synthesized by atom transfer radical polymerization (ATRP) of a hydrophilic cationic monomer (2-(dimethylamino)ethyl methacrylate) (DMAEMA) and a zwitterionic monomer (sulfobetaine methacrylate) (SBMA) from cyclodextrin with multi-initiator sites. These star polymers with different arm lengths and arm densities were characterized by 1H NMR and GPC. Thermo-responsive behaviors of the star polymers were investigated not only at different pH values, but also at different NaCl concentrations. The size and morphology of the star polymers and their aggregates were measured by dynamic light scattering and transmission electron microscopy. The star polymers showed only upper critical solution temperature (UCST) behavior, since zwitterionic PSBMA outer blocks shielded the lower critical solution temperature (LCST) behavior of PDMAEMA midblocks. However, PDMAEMA blocks had significant influence on the thermo-induced associations of the star polymers, and resulted in a tunable critical aggregation temperature with varying arm density or pH value of solution. Moreover, enhanced thermo-responsive behavior was also obtained at NaCl concentrations up to more than 20 mM, which is much higher than those reported before. Finally, biocompatibility evaluations showed that the star polymers could effectively reduce the adsorption of BSA in PBS solution and had insignificant cytotoxicity to MCF-7 cells. These results demonstrate they are good candidates for potential applications in biomedically relevant fields. This journal is

AB - Star-shaped thermo-responsive block copolymers were synthesized by atom transfer radical polymerization (ATRP) of a hydrophilic cationic monomer (2-(dimethylamino)ethyl methacrylate) (DMAEMA) and a zwitterionic monomer (sulfobetaine methacrylate) (SBMA) from cyclodextrin with multi-initiator sites. These star polymers with different arm lengths and arm densities were characterized by 1H NMR and GPC. Thermo-responsive behaviors of the star polymers were investigated not only at different pH values, but also at different NaCl concentrations. The size and morphology of the star polymers and their aggregates were measured by dynamic light scattering and transmission electron microscopy. The star polymers showed only upper critical solution temperature (UCST) behavior, since zwitterionic PSBMA outer blocks shielded the lower critical solution temperature (LCST) behavior of PDMAEMA midblocks. However, PDMAEMA blocks had significant influence on the thermo-induced associations of the star polymers, and resulted in a tunable critical aggregation temperature with varying arm density or pH value of solution. Moreover, enhanced thermo-responsive behavior was also obtained at NaCl concentrations up to more than 20 mM, which is much higher than those reported before. Finally, biocompatibility evaluations showed that the star polymers could effectively reduce the adsorption of BSA in PBS solution and had insignificant cytotoxicity to MCF-7 cells. These results demonstrate they are good candidates for potential applications in biomedically relevant fields. This journal is

UR - http://www.scopus.com/inward/record.url?scp=84961287899&partnerID=8YFLogxK

U2 - 10.1039/c5ra02115d

DO - 10.1039/c5ra02115d

M3 - Article

VL - 5

SP - 28133

EP - 28140

JO - RSC Advances

JF - RSC Advances

SN - 2046-2069

IS - 36

ER -