TY - JOUR
T1 - Thermal sensitivity and flexibility of the Cε3 domains in immunoglobulin E
AU - Doré, Katy A.
AU - Davies, Anna M.
AU - Drinkwater, Nyssa
AU - Beavil, Andrew J.
AU - McDonnell, James M
AU - Sutton, Brian J
PY - 2017/11
Y1 - 2017/11
N2 - Immunoglobulin E (IgE) is the antibody that plays a central role in the mechanisms of allergic diseases such as asthma. Interactions with its receptors, FcεRI on mast cells and CD23 on B cells, are mediated by the Fc region, a dimer of the Cε2, Cε3 and Cε4 domains. A sub-fragment lacking the Cε2 domains, Fcε3–4, also binds to both receptors, although receptor binding almost exclusively involves the Cε3 domains. This domain also contains the N-linked glycosylation site conserved in other isotypes. We report here the crystal structures of IgE-Fc and Fcε3–4 at the highest resolutions yet determined, 1.75 Å and 2.0 Å respectively, revealing unprecedented detail regarding the carbohydrate and its interactions with protein domains. Analysis of the crystallographic B-factors of these, together with all earlier IgE-Fc and Fcε3–4 structures, shows that the Cε3 domains exhibit the greatest intrinsic flexibility and quaternary structural variation within IgE-Fc. Intriguingly, both well-ordered carbohydrate and disordered polypeptide can be seen within the same Cε3 domain. A simplified method for comparing the quaternary structures of the Cε3 domains in free and receptor-bound IgE-Fc structures is presented, which clearly delineates the FcεRI and CD23 bound states. Importantly, differential scanning fluorimetric analysis of IgE-Fc and Fcε3–4 identifies Cε3 as the domain most susceptible to thermally-induced unfolding, and responsible for the characteristically low melting temperature of IgE.
AB - Immunoglobulin E (IgE) is the antibody that plays a central role in the mechanisms of allergic diseases such as asthma. Interactions with its receptors, FcεRI on mast cells and CD23 on B cells, are mediated by the Fc region, a dimer of the Cε2, Cε3 and Cε4 domains. A sub-fragment lacking the Cε2 domains, Fcε3–4, also binds to both receptors, although receptor binding almost exclusively involves the Cε3 domains. This domain also contains the N-linked glycosylation site conserved in other isotypes. We report here the crystal structures of IgE-Fc and Fcε3–4 at the highest resolutions yet determined, 1.75 Å and 2.0 Å respectively, revealing unprecedented detail regarding the carbohydrate and its interactions with protein domains. Analysis of the crystallographic B-factors of these, together with all earlier IgE-Fc and Fcε3–4 structures, shows that the Cε3 domains exhibit the greatest intrinsic flexibility and quaternary structural variation within IgE-Fc. Intriguingly, both well-ordered carbohydrate and disordered polypeptide can be seen within the same Cε3 domain. A simplified method for comparing the quaternary structures of the Cε3 domains in free and receptor-bound IgE-Fc structures is presented, which clearly delineates the FcεRI and CD23 bound states. Importantly, differential scanning fluorimetric analysis of IgE-Fc and Fcε3–4 identifies Cε3 as the domain most susceptible to thermally-induced unfolding, and responsible for the characteristically low melting temperature of IgE.
KW - Antibody
KW - Differential scanning fluorimetry
KW - Domain flexibility
KW - Glycosylation
KW - Immunoglobulin E
KW - Thermal unfolding
UR - http://www.scopus.com/inward/record.url?scp=85028949147&partnerID=8YFLogxK
U2 - 10.1016/j.bbapap.2017.08.005
DO - 10.1016/j.bbapap.2017.08.005
M3 - Article
AN - SCOPUS:85028949147
SN - 1570-9639
VL - 1865
SP - 1336
EP - 1347
JO - BBA Proteins and Proteomics
JF - BBA Proteins and Proteomics
IS - 11, Part A
ER -