There is no magnetic braking catastrophe: Low-mass star cluster and protostellar disc formation with non-ideal magnetohydrodynamics

James Wurster, Matthew R. Bate, Daniel J. Price

Research output: Contribution to journalArticleResearchpeer-review

63 Citations (Scopus)

Abstract

We present results from the first radiation non-ideal magnetohydrodynamics (MHD) simulations of low-mass star cluster formation that resolve the fragmentation process down to the opacity limit. We model 50 Mθ turbulent clouds initially threaded by a uniform magnetic field with strengths of 3, 5 10, and 20 times the critical mass-to-magnetic flux ratio, and at each strength, we model both an ideal and non-ideal (including Ohmic resistivity, ambipolar diffusion, and theHall effect)MHDcloud. Turbulence and magnetic fields shape the large-scale structure of the cloud, and similar structures form regardless of whether ideal or non-ideal MHD is employed. At high densities (106 ≲ nH ≲ 1011 cm-3), all models have a similar magnetic field strength versus density relation, suggesting that the field strength in dense cores is independent of the large-scale environment. Albeit with limited statistics, we find no evidence for the dependence of the initial mass function on the initial magnetic field strength, however, the star formation rate decreases for models with increasing initial field strengths; the exception is the strongest field case where collapse occurs primarily along field lines. Protostellar discs with radii ≳ 20 au form in all models, suggesting that disc formation is dependent on the gas turbulence rather than on magnetic field strength. We find no evidence for the magnetic braking catastrophe, and find that magnetic fields do not hinder the formation of protostellar discs.

Original languageEnglish
Pages (from-to)1719-1741
Number of pages23
JournalMonthly Notices of the Royal Astronomical Society
Volume489
Issue number2
DOIs
Publication statusPublished - Oct 2019

Keywords

  • ISM: Magnetic fields
  • MHD
  • Protoplanetary discs
  • Stars: Formation
  • Turbulence

Cite this