TY - JOUR
T1 - Therapeutic vaccination for central nervous system repair
AU - Ang, Beng Ti
AU - Xu, Gang
AU - Xiao, Zhi-Cheng
PY - 2006
Y1 - 2006
N2 - 1. Vaccination against infectious agents has been heralded as a triumph in modern medicine and, more recently, cancer vaccines have risen in prominence. The present review looks towards the use of vaccine therapy to attenuate damage after injury to the central nervous system (CNS). 2. Significant debility is associated with brain injury, most commonly occurring as a result of physical trauma or stroke. This end result reflects the inability of neurons and axons to regenerate following injury to the CNS. This unconductive environment is due, in large part, to the presence of myelin and oligodendrocyte-related inhibitors of neurite outgrowth. 3. We review how a vaccine-based approach has been variably used to circumvent this issue and promote axonal regeneration and repair following traumatic injury and other neurodegenerative disorders. In addition, emerging evidence suggests that the immune response to injury in the CNS may be manipulated so as to reduce cellular damage. Vaccine-directed approaches using this concept are also outlined.
AB - 1. Vaccination against infectious agents has been heralded as a triumph in modern medicine and, more recently, cancer vaccines have risen in prominence. The present review looks towards the use of vaccine therapy to attenuate damage after injury to the central nervous system (CNS). 2. Significant debility is associated with brain injury, most commonly occurring as a result of physical trauma or stroke. This end result reflects the inability of neurons and axons to regenerate following injury to the CNS. This unconductive environment is due, in large part, to the presence of myelin and oligodendrocyte-related inhibitors of neurite outgrowth. 3. We review how a vaccine-based approach has been variably used to circumvent this issue and promote axonal regeneration and repair following traumatic injury and other neurodegenerative disorders. In addition, emerging evidence suggests that the immune response to injury in the CNS may be manipulated so as to reduce cellular damage. Vaccine-directed approaches using this concept are also outlined.
UR - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16700891
U2 - 10.1111/j.1440-1681.2006.04404.x
DO - 10.1111/j.1440-1681.2006.04404.x
M3 - Article
SN - 0305-1870
VL - 33
SP - 541
EP - 545
JO - Clinical and Experimental Pharmacology and Physiology
JF - Clinical and Experimental Pharmacology and Physiology
IS - 5-6
ER -