Theoretical study of the mutarotation of erythrose and threose: Acid catalysis

Luis Miguel Azofra Mesa, Ibon Alkorta, Jose Elguero

Research output: Contribution to journalArticleResearchpeer-review

12 Citations (Scopus)

Abstract

The acid catalysis of the mutarotation mechanism in the two aldotetroses, d-erythrose and d-threose, has been studied at B3LYP/6-311++G(d,p) computational level in gas phase and in solution employing the PCM-water model. The open-chain, the furanose and the connecting TS structures have been characterized. To study the enhancing effect of acid groups on the electrophilicity of the carbonyl carbon atom, four situations have been considered: (i) a classical Lewis acid as BH3; (ii) a classical hard-Pearson acid as Na+; (iii) classical Br?nsted acids as H+ and H3O+; and (iv) a combined strategy using H3O+ and one bridge-H2O molecule as assistant in the proton transfer process. All the acidic groups reduce the activation energy with exception of the Na+, which can act, in some cases, as inhibitor. It is greatly reduced by the presence of Br?nsted acids (iii) and through the combined strategy (iv). For this last mechanism, the electronic activation energies are between 12 and 43 kJ mol-1 in vacuum and between 13 and 25 kJ mol-1 in water solution, through the use of the PCM model.
Original languageEnglish
Pages (from-to)1 - 8
Number of pages8
JournalCarbohydrate Research
Volume372
DOIs
Publication statusPublished - 2013
Externally publishedYes

Cite this