The zebrafish dystrophic mutant softy maintains muscle fibre viability despite basement membrane rupture and muscledetachment

Arie S Jacoby, Elisabeth Busch-Nentwich, Robert James Bryson-Richardson, Thomas Edward Hall, Joachim Berger, Silke Berger, Carmen Sonntag, Caroline Sachs, Robert Geisler, Derek Stemple, Peter David Currie

Research output: Contribution to journalArticleResearchpeer-review

38 Citations (Scopus)


The skeletal muscle basement membrane fulfils several crucial functions during development and in the mature myotome and defects in its composition underlie certain forms of muscular dystrophy. A major component of this extracellular structure is the laminin polymer, which assembles into a resilient meshwork that protects the sarcolemma during contraction. Here we describe a zebrafish mutant, softy, which displays severe embryonic muscle degeneration as a result of initial basement membrane failure. The softy phenotype is caused by a mutation in the lamb2 gene, identifying laminin beta2 as an essential component of this basement membrane. Uniquely, softy homozygotes are able to recover and survive to adulthood despite the loss of myofibre adhesion. We identify the formation of ectopic, stable basement membrane attachments as a novel means by which detached fibres are able to maintain viability. This demonstration of a muscular dystrophy model possessing innate fibre viability following muscle detachment suggests basement membrane augmentation as a therapeutic strategy to inhibit myofibre loss.
Original languageEnglish
Pages (from-to)3367 - 3376
Number of pages10
Issue number19
Publication statusPublished - 2009

Cite this