TY - JOUR
T1 - The unusual suspects - Innate lymphoid cells as novel therapeutic targets in IBD
AU - Goldberg, Rimma
AU - Prescott, Natalie
AU - Lord, Graham M.
AU - MacDonald, Thomas T.
AU - Powell, Nick
PY - 2015/5/22
Y1 - 2015/5/22
N2 - Innate lymphoid cells (ILCs) are a family of immune cells that selectively accumulate in mucosal tissues serving as sentinels at the vanguard of host protective immunity. However, they are also implicated as cellular mediators of immune-mediated diseases, most notably IBD. ILCs are subdivided into distinct lineages based on the expression of effector cytokines and master transcription factors that programme their differentiation and inflammatory behaviour. Strikingly, these subsets closely resemble CD4+ T-cell lineages, including T helper (TH)1, TH2 and TH17 cells that are similarly implicated in immune-mediated diseases. However, ILCs that promote the maintenance of intestinal epithelial cells, mostly through production of IL-22, also exist. ILCs rapidly respond to environmental cues, including cytokines, metabolic signals and luminal bacteria. They are potent and immediate producers of key cytokines linked to IBD pathogenesis, including TNF, IL-17, IL-22 and IFN-γ. Some subsets are implicated as mediators of chronic intestinal inflammation, whereas others might provide protective functions. They are present in the gut of patients with IBD and, intriguingly, closer scrutiny of IBD susceptibility loci shows that many of these genes are either expressed by, or are intimately linked to, ILC function. Looking forward, targeting ILCs could represent a new IBD treatment paradigm.
AB - Innate lymphoid cells (ILCs) are a family of immune cells that selectively accumulate in mucosal tissues serving as sentinels at the vanguard of host protective immunity. However, they are also implicated as cellular mediators of immune-mediated diseases, most notably IBD. ILCs are subdivided into distinct lineages based on the expression of effector cytokines and master transcription factors that programme their differentiation and inflammatory behaviour. Strikingly, these subsets closely resemble CD4+ T-cell lineages, including T helper (TH)1, TH2 and TH17 cells that are similarly implicated in immune-mediated diseases. However, ILCs that promote the maintenance of intestinal epithelial cells, mostly through production of IL-22, also exist. ILCs rapidly respond to environmental cues, including cytokines, metabolic signals and luminal bacteria. They are potent and immediate producers of key cytokines linked to IBD pathogenesis, including TNF, IL-17, IL-22 and IFN-γ. Some subsets are implicated as mediators of chronic intestinal inflammation, whereas others might provide protective functions. They are present in the gut of patients with IBD and, intriguingly, closer scrutiny of IBD susceptibility loci shows that many of these genes are either expressed by, or are intimately linked to, ILC function. Looking forward, targeting ILCs could represent a new IBD treatment paradigm.
UR - http://www.scopus.com/inward/record.url?scp=84929663292&partnerID=8YFLogxK
U2 - 10.1038/nrgastro.2015.52
DO - 10.1038/nrgastro.2015.52
M3 - Review Article
C2 - 25971811
AN - SCOPUS:84929663292
SN - 1759-5045
VL - 12
SP - 271
EP - 283
JO - Nature Reviews Gastroenterology & Hepatology
JF - Nature Reviews Gastroenterology & Hepatology
IS - 5
ER -