TY - JOUR
T1 - The uncertainties in the 22Ne+alpha-capture reaction rates and the production of the heavy magnesium isotopes in asymptotic giant branch stars of intermediate mass
AU - Karakas, Amanda Irene
AU - Lugaro, Maria Anna
AU - Wiescher, Michael
AU - Gorres, Joachim
AU - Ugalde, Claudio
PY - 2006
Y1 - 2006
N2 - We present new rates for the Ne-22(alpha, n)Mg-25 and Ne-22(alpha, gamma) Mg-26 reactions, with uncertainties that have been considerably reduced compared to previous estimates, and we study how these new rates affect the production of the heavy magnesium isotopes in models of intermediate-mass asymptotic giant branch (AGB) stars of different initial compositions. All the models have deep third dredge-up, hot bottom burning, and mass loss. Calculations have been performed using the two most commonly used estimates of the Ne-22+alpha rates as well as the new recommended rates, and with combinations of their upper and lower limits. The main result of the present study is that, with the new rates, uncertainties on the production of isotopes from Mg to P coming from the Ne-22+alpha capture rates have been considerably reduced. We have therefore removed one of the important sources of uncertainty to effect models of AGB stars. We have studied the effects of varying the mass-loss rate on nucleosynthesis and discuss other uncertainties related to the physics employed in the computation of stellar structure, such as the modeling of convection, the inclusion of a partial mixing zone, and the definition of convective borders. These uncertainties are found to be much larger than those coming from Ne-22+alpha-capture rates, when using our new estimates. Much effort is needed to improve the situation for AGB models.
AB - We present new rates for the Ne-22(alpha, n)Mg-25 and Ne-22(alpha, gamma) Mg-26 reactions, with uncertainties that have been considerably reduced compared to previous estimates, and we study how these new rates affect the production of the heavy magnesium isotopes in models of intermediate-mass asymptotic giant branch (AGB) stars of different initial compositions. All the models have deep third dredge-up, hot bottom burning, and mass loss. Calculations have been performed using the two most commonly used estimates of the Ne-22+alpha rates as well as the new recommended rates, and with combinations of their upper and lower limits. The main result of the present study is that, with the new rates, uncertainties on the production of isotopes from Mg to P coming from the Ne-22+alpha capture rates have been considerably reduced. We have therefore removed one of the important sources of uncertainty to effect models of AGB stars. We have studied the effects of varying the mass-loss rate on nucleosynthesis and discuss other uncertainties related to the physics employed in the computation of stellar structure, such as the modeling of convection, the inclusion of a partial mixing zone, and the definition of convective borders. These uncertainties are found to be much larger than those coming from Ne-22+alpha-capture rates, when using our new estimates. Much effort is needed to improve the situation for AGB models.
UR - http://iopscience.iop.org/0004-637X/643/1/471/pdf/63173.web.pdf
M3 - Article
SN - 0004-637X
VL - 643
SP - 471
EP - 483
JO - The Astrophysical Journal
JF - The Astrophysical Journal
IS - 1
ER -