TY - JOUR
T1 - The structural correlates of functional deficits in early Huntington's disease
AU - Delmaire, Christine
AU - Dumas, Eve M
AU - Sharman, Michael A
AU - van den Bogaard, S J A
AU - Valabregue, Romain
AU - Jauffret, C
AU - Justo, Damian
AU - Reilmann, Ralph
AU - Stout, Julie C
AU - Craufurd, David O
AU - Tabrizi, Sarah J
AU - Roos, Raymund A C
AU - Durr, Alexandra
AU - Lehericy, Stephane
PY - 2013
Y1 - 2013
N2 - Neuropathological studies in Huntington disease (HD) have demonstrated neuronal loss in the striatum, as well as in other brain regions including the cortex. With diffusion tensor MRI we evaluated the hypothesis that the clinical dysfunction in HD is related to regionally specific lesions of circuit-specific cortico-basal ganglia networks rather than to the striatum only. We included 27 HD and 24 controls from the TRACK-HD Paris cohort. The following assessments were used: self-paced tapping tasks, trail B making test (TMT), University of Pennsylvania smell identification test (UPSIT), and apathy scores from the problem behaviors assessment. Group comparisons of fractional anisotropy and mean diffusivity and correlations were performed using voxel-based analysis. In the cortex, HD patients showed significant correlations between: (i) self paced tapping and mean diffusivity in the parietal lobe at 1.8 Hz and prefrontal areas at 3 Hz, (ii) UPSIT and mean diffusivity in the parietal, and median temporal lobes, the cingulum and the insula, and fractional anisotropy in the insula and the external capsule, (iii) TMT B and mean diffusivity in the white matter of the superior frontal, orbital, temporal, superior parietal and post central areas, and (iv) apathy and fractional anisotropy in the white matter of the rectus gyrus. In the basal ganglia, we found correlations between the self paced tapping, UPSIT, TMT tests, and mean diffusivity in the anterior part of the putamen and the caudate nucleus. In conclusion, disruption of motor, associative and limbic cortico-striatal circuits differentially contribute to the clinical signs of the disease.
AB - Neuropathological studies in Huntington disease (HD) have demonstrated neuronal loss in the striatum, as well as in other brain regions including the cortex. With diffusion tensor MRI we evaluated the hypothesis that the clinical dysfunction in HD is related to regionally specific lesions of circuit-specific cortico-basal ganglia networks rather than to the striatum only. We included 27 HD and 24 controls from the TRACK-HD Paris cohort. The following assessments were used: self-paced tapping tasks, trail B making test (TMT), University of Pennsylvania smell identification test (UPSIT), and apathy scores from the problem behaviors assessment. Group comparisons of fractional anisotropy and mean diffusivity and correlations were performed using voxel-based analysis. In the cortex, HD patients showed significant correlations between: (i) self paced tapping and mean diffusivity in the parietal lobe at 1.8 Hz and prefrontal areas at 3 Hz, (ii) UPSIT and mean diffusivity in the parietal, and median temporal lobes, the cingulum and the insula, and fractional anisotropy in the insula and the external capsule, (iii) TMT B and mean diffusivity in the white matter of the superior frontal, orbital, temporal, superior parietal and post central areas, and (iv) apathy and fractional anisotropy in the white matter of the rectus gyrus. In the basal ganglia, we found correlations between the self paced tapping, UPSIT, TMT tests, and mean diffusivity in the anterior part of the putamen and the caudate nucleus. In conclusion, disruption of motor, associative and limbic cortico-striatal circuits differentially contribute to the clinical signs of the disease.
UR - http://onlinelibrary.wiley.com/doi/10.1002/hbm.22055/pdf
U2 - 10.1002/hbm.22055
DO - 10.1002/hbm.22055
M3 - Article
SN - 1065-9471
VL - 34
SP - 2141
EP - 2153
JO - Human Brain Mapping
JF - Human Brain Mapping
IS - 9
ER -