TY - JOUR
T1 - The reactivity of N-vinylcarbazole in RAFT polymerization
T2 - Trithiocarbonates deliver optimal control for the synthesis of homopolymers and block copolymers
AU - Keddie, Daniel J.
AU - Guerrero-Sanchez, Carlos
AU - Moad, Graeme
PY - 2013/6/21
Y1 - 2013/6/21
N2 - The use of various RAFT agents (ZC(S)SR) including dithiobenzoates (Z = Ph), trithiocarbonates (Z = SR′), xanthates (Z = OR′), and conventional and switchable N-aryldithiocarbamates (Z = NR′Ar) in RAFT polymerization of N-vinylcarbazole (NVC) has been explored with a view to establishing which is most effective. Consistent with earlier work, we find that xanthates and N-aryldithiocarbamates give adequate control (dispersities < 1.3) while dithiobenzoates give marked retardation. However, contrary to popular belief, we find that the polymerization of NVC is best controlled with trithiocarbonate RAFT agents, which provide both good molecular weight control, very narrow dispersities (1.1), and high end-group fidelity. The results demonstrate that NVC has intermediate reactivity, i.e. between that of the traditional more activated (MAMs; styrene, acrylates) and less activated monomers (LAMs; vinyl acetate, N-vinylpyrrolidone). A further key to good control is the selection of RAFT agent R substituent to be both a good leaving group and a good initiating radical. The cyanomethyl group meets these criteria whereas phenylethyl is a poor initiating radical for NVC polymerization. A further demonstration of the intermediate reactivity of NVC and the derived propagating radical was the successful preparation of both poly(n-butyl acrylate)-block-poly(N-vinylcarbazole) and poly(N-vinylcarbazole)-block-poly(n- butyl acrylate) with a trithiocarbonate RAFT agent (the sequence of block synthesis is not important). Two-dimensional, liquid chromatography near critical conditions-gel permeation chromatography (LCCC-GPC) has been applied to demonstrate block purity. The corresponding styrene-based blocks can also be successfully synthesized, however, the reinitiation of NVC polymerization by the polystyryl radical proved to be a constraint on the purity of polystyrene-block-poly(N-vinylcarbazole).
AB - The use of various RAFT agents (ZC(S)SR) including dithiobenzoates (Z = Ph), trithiocarbonates (Z = SR′), xanthates (Z = OR′), and conventional and switchable N-aryldithiocarbamates (Z = NR′Ar) in RAFT polymerization of N-vinylcarbazole (NVC) has been explored with a view to establishing which is most effective. Consistent with earlier work, we find that xanthates and N-aryldithiocarbamates give adequate control (dispersities < 1.3) while dithiobenzoates give marked retardation. However, contrary to popular belief, we find that the polymerization of NVC is best controlled with trithiocarbonate RAFT agents, which provide both good molecular weight control, very narrow dispersities (1.1), and high end-group fidelity. The results demonstrate that NVC has intermediate reactivity, i.e. between that of the traditional more activated (MAMs; styrene, acrylates) and less activated monomers (LAMs; vinyl acetate, N-vinylpyrrolidone). A further key to good control is the selection of RAFT agent R substituent to be both a good leaving group and a good initiating radical. The cyanomethyl group meets these criteria whereas phenylethyl is a poor initiating radical for NVC polymerization. A further demonstration of the intermediate reactivity of NVC and the derived propagating radical was the successful preparation of both poly(n-butyl acrylate)-block-poly(N-vinylcarbazole) and poly(N-vinylcarbazole)-block-poly(n- butyl acrylate) with a trithiocarbonate RAFT agent (the sequence of block synthesis is not important). Two-dimensional, liquid chromatography near critical conditions-gel permeation chromatography (LCCC-GPC) has been applied to demonstrate block purity. The corresponding styrene-based blocks can also be successfully synthesized, however, the reinitiation of NVC polymerization by the polystyryl radical proved to be a constraint on the purity of polystyrene-block-poly(N-vinylcarbazole).
UR - http://www.scopus.com/inward/record.url?scp=84881567842&partnerID=8YFLogxK
U2 - 10.1039/c3py00487b
DO - 10.1039/c3py00487b
M3 - Article
AN - SCOPUS:84881567842
SN - 1759-9954
VL - 4
SP - 3591
EP - 3601
JO - Polymer Chemistry
JF - Polymer Chemistry
IS - 12
ER -