Abstract
The host-guest chemistry of O,O′-diisopropyl fluorophosphate (DFP), a phosphonofluoridate G-series chemical warfare agent simulant, was investigated in the presence of a number of octanuclear cubic coordination cage hosts. The aim was to demonstrate cage-catalysed hydrolysis of DFP at near neutral pH: however, two octanuclear coordination cages, HPEG (containing water-solubilising PEG groups) and HW (containing water-solubilising hydroxymethyl groups), were actually found to increase the lifetime of DFP in aqueous buffer solution (pH 8.7). Crystallographic analysis of DFP with a structurally related host cage revealed that DFP binds to windows in the cage surface, not in the internal cavity. The phosphorus-fluorine bond is directed into the cavity rather than towards the external environment, with the cage/DFP association protecting DFP from hydrolysis. Initial studies with the chemical warfare agent (CWA) sarin (GB) with HPEG cage in a buffered solution also showed a drastically reduced rate of hydrolysis for sarin when bound in the host cage. The ability of these cages to inhibit hydrolysis of these P-F bond containing organophosphorus guests, by encapsulation, may have applications in forensic sample preservation and analysis.
Original language | English |
---|---|
Pages (from-to) | 11802-11814 |
Number of pages | 13 |
Journal | Dalton Transactions |
Volume | 52 |
Issue number | 34 |
DOIs | |
Publication status | Published - 14 Sept 2023 |
Equipment
-
Australian Synchrotron
Office of the Vice-Provost (Research and Research Infrastructure)Facility/equipment: Facility