The NUP98-HOXD13 fusion oncogene induces thymocyte self-renewal via Lmo2/Lyl1

Benjamin J. Shields, Christopher I. Slape, Ngoc Vo, Jacob T. Jackson, Adriana Pliego-Zamora, Hansini Ranasinghe, Wei Shi, David J. Curtis, Matthew P. McCormack

Research output: Contribution to journalArticleResearchpeer-review

2 Citations (Scopus)

Abstract

T cell acute lymphoblastic leukaemia (T-ALL) cases include subfamilies that overexpress the TAL1/LMO, TLX1/3 and HOXA transcription factor oncogenes. While it has been shown that TAL1/LMO transcription factors induce self-renewal of thymocytes, whether this is true for other transcription factor oncogenes is unknown. To address this, we have studied NUP98-HOXD13-transgenic (NHD13-Tg) mice, which overexpress HOXA transcription factors throughout haematopoiesis and develop both myelodysplastic syndrome (MDS) progressing to acute myeloid leukaemia (AML) as well as T-ALL. We find that thymocytes from preleukaemic NHD13-Tg mice can serially transplant, demonstrating that they have self-renewal capacity. Transcriptome analysis shows that NHD13-Tg thymocytes exhibit a stem cell-like transcriptional programme closely resembling that induced by Lmo2, including Lmo2 itself and its critical cofactor Lyl1. To determine whether Lmo2/Lyl1 are required for NHD13-induced thymocyte self-renewal, NHD13-Tg mice were crossed with Lyl1 knockout mice. This showed that Lyl1 is essential for expression of the stem cell-like gene expression programme in thymocytes and self-renewal. Surprisingly however, NHD13 transgenic mice lacking Lyl1 showed accelerated T-ALL and absence of transformation to AML, associated with a loss of multipotent progenitors in the bone marrow. Thus multiple T cell oncogenes induce thymocyte self-renewal via Lmo2/Lyl1; however, NHD13 can also promote T-ALL via an alternative pathway.

Original languageEnglish
Number of pages13
JournalLeukemia
DOIs
Publication statusPublished - 1 Jan 2019

Cite this