The NIH Somatic Cell Genome Editing program

Krishanu Saha, Erik J. Sontheimer, P. J. Brooks, Melinda R. Dwinell, Charles A. Gersbach, David R. Liu, Stephen A. Murray, Shengdar Q. Tsai, Ross C. Wilson, Daniel G. Anderson, Aravind Asokan, Jillian F. Banfield, Krystof S. Bankiewicz, Gang Bao, Jeff W.M. Bulte, Nenad Bursac, Jarryd M. Campbell, Daniel F. Carlson, Elliot L. Chaikof, Zheng Yi ChenR. Holland Cheng, Karl J. Clark, David T. Curiel, James E. Dahlman, Benjamin E. Deverman, Mary E. Dickinson, Jennifer A. Doudna, Stephen C. Ekker, Marina E. Emborg, Guoping Feng, Benjamin S. Freedman, David M. Gamm, Guangping Gao, Ionita C. Ghiran, Peter M. Glazer, Shaoqin Gong, Jason D. Heaney, Jon D. Hennebold, John T. Hinson, Anastasia Khvorova, Samira Kiani, William R. Lagor, Kit S. Lam, Kam W. Leong, Jon E. Levine, Jennifer A. Lewis, Cathleen M. Lutz, Danith H. Ly, Samantha Maragh, Paul B. McCray, Todd C. McDevitt, Oleg Mirochnitchenko, Ryuji Morizane, Niren Murthy, Randall S. Prather, John A. Ronald, Subhojit Roy, Sushmita Roy, Venkata Sabbisetti, W. Mark Saltzman, Philip J. Santangelo, David J. Segal, Mary Shimoyama, Melissa C. Skala, Alice F. Tarantal, John C. Tilton, George A. Truskey, Moriel Vandsburger, Jonathan K. Watts, Kevin D. Wells, Scot A. Wolfe, Qiaobing Xu, Wen Xue, Guohua Yi, Jiangbing Zhou, The SCGE Consortium

Research output: Contribution to journalReview ArticleResearchpeer-review

79 Citations (Scopus)

Abstract

The move from reading to writing the human genome offers new opportunities to improve human health. The United States National Institutes of Health (NIH) Somatic Cell Genome Editing (SCGE) Consortium aims to accelerate the development of safer and more-effective methods to edit the genomes of disease-relevant somatic cells in patients, even in tissues that are difficult to reach. Here we discuss the consortium’s plans to develop and benchmark approaches to induce and measure genome modifications, and to define downstream functional consequences of genome editing within human cells. Central to this effort is a rigorous and innovative approach that requires validation of the technology through third-party testing in small and large animals. New genome editors, delivery technologies and methods for tracking edited cells in vivo, as well as newly developed animal models and human biological systems, will be assembled—along with validated datasets—into an SCGE Toolkit, which will be disseminated widely to the biomedical research community. We visualize this toolkit—and the knowledge generated by its applications—as a means to accelerate the clinical development of new therapies for a wide range of conditions.

Original languageEnglish
Pages (from-to)195-204
Number of pages10
JournalNature
Volume592
Issue number7853
DOIs
Publication statusPublished - 8 Apr 2021
Externally publishedYes

Cite this