Projects per year
Abstract
Social-cognitive processes facilitate the use of environmental cues to understand others, and to be understood by others. Animal models provide vital insights into the neural underpinning of social behaviours. To understand social cognition at even deeper behavioural, cognitive, neural, and molecular levels, we need to develop more representative study models, which allow testing of novel hypotheses using human-relevant cognitive tasks. Due to their cooperative breeding system and relatively small size, common marmosets (Callithrix jacchus) offer a promising translational model for such endeavours. In addition to having social behavioural patterns and group dynamics analogous to those of humans, marmosets have cortical brain areas relevant for the mechanistic analysis of human social cognition, albeit in simplified form. Thus, they are likely suitable animal models for deciphering the physiological processes, connectivity and molecular mechanisms supporting advanced cognitive functions. Here, we review findings emerging from marmoset social and behavioural studies, which have already provided significant insights into executive, motivational, social, and emotional dysfunction associated with neurological and psychiatric disorders.
Original language | English |
---|---|
Article number | 104692 |
Number of pages | 19 |
Journal | Neuroscience and Biobehavioral Reviews |
Volume | 138 |
DOIs | |
Publication status | Published - Jul 2022 |
Keywords
- Common marmosets
- Inter-individual differences
- Prefrontal cortex
- Social behaviour
- Social context
- Social-cognitive abilities
Projects
- 1 Finished
-
ARC Centre of Excellence for Integrative Brain Function
Egan, G. (Primary Chief Investigator (PCI)), Rosa, M. (Chief Investigator (CI)), Lowery, A. (Chief Investigator (CI)), Stuart, G. (Chief Investigator (CI)), Arabzadeh, E. (Chief Investigator (CI)), Skafidas, E. (Chief Investigator (CI)), Ibbotson, M. (Chief Investigator (CI)), Petrou, S. (Chief Investigator (CI)), Paxinos, G. (Chief Investigator (CI)), Mattingley, J. (Chief Investigator (CI)), Garrido, M. (Chief Investigator (CI)), Sah, P. K. (Chief Investigator (CI)), Robinson, P. A. (Chief Investigator (CI)), Martin, P. (Chief Investigator (CI)), Grunert, U. (Chief Investigator (CI)), Tanaka, K. (Partner Investigator (PI)), Mitra, P. (Partner Investigator (PI)), Johnson, G. (Partner Investigator (PI)), Diamond, M. (Partner Investigator (PI)), Margrie, T. (Partner Investigator (PI)), Leopold, D. (Partner Investigator (PI)), Movshon, J. (Partner Investigator (PI)), Markram, H. (Partner Investigator (PI)), Victor, J. (Partner Investigator (PI)), Hill, S. (Partner Investigator (PI)) & Jirsa, V. K. (Partner Investigator (PI))
Australian National University (ANU), Eidgenössische Technische Hochschule Zürich (ETH Zürich) (Federal Institute of Technology Zurich), Australian Research Council (ARC), Karolinska Institutet (Karolinska Institute), Council of the Queensland Institute of Medical Research (trading as QIMR Berghofer Medical Research Institute), Ecole Polytechnique Federale de Lausanne (EPFL) (Swiss Federal Institute of Technology in Lausanne) , Monash University, University of Melbourne, University of New South Wales (UNSW), University of Queensland , University of Sydney, Monash University – Internal University Contribution, NIH - National Institutes of Health (United States of America), Cornell University, New York University, Francis Crick Institute, Scuola Internazionale Superiore di Studi Avanzati (International School for Advanced Studies), Duke University, Cold Spring Harbor Laboratory, RIKEN
25/06/14 → 31/12/21
Project: Research