Abstract
The purpose of this study was to examine the involvement of fatty acid–binding protein 5 (FABP5), a lipid-binding protein expressed at the blood-brain barrier (BBB), in fatty acid and drug uptake into human brain endothelial cells. Following transfection with siRNA against hFABP5, human brain endothelial cell (hCMEC/D3) uptake of lipophilic ligands with varying affinity to FABP5 was assessed with intracellular concentrations quantified by liquid scintillation counting, HPLC, or LCMS/MS. The in situ BBB transport of [3H]-diazepam was also assessed in wild type and FABP5-deficient mice. hFABP5 siRNA reduced FABP5 expression in hCMEC/D3 cells by 39.9 ± 3.8% (mRNA) and 38.8 ± 6.6% (protein; mean ± SEM), leading to a reduction in uptake of [14C]-lauric acid, [3H]-oleic acid, and [14C]-stearic acid by 37.5 ± 8.8%, 41.7 ± 11.6%, and 50.7 ± 13.6%, respectively, over 1 min. No significant changes in [14C]-diazepam, pioglitazone, and troglitazone uptake were detected following FABP5 knockdown in hCMEC/D3 cells. Similarly, no difference in BBB transport of [3H]-diazepam was observed between wild type and FABP5-deficient mice. Therefore, although FABP5 facilitates brain endothelial cell uptake of fatty acids, it has limited effects on brain endothelial cell uptake and BBB transport of drugs with lower affinity for FABP5.
Original language | English |
---|---|
Number of pages | 1 |
Publication status | Published - 2013 |
Event | Australasian Pharmaceutical Science Association Annual Conference - Duration: 8 Dec 2013 → 11 Dec 2013 |
Conference
Conference | Australasian Pharmaceutical Science Association Annual Conference |
---|---|
Period | 8/12/13 → 11/12/13 |