The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development

Shu Mei Teo, Danny Mok, Kym Pham, Merci Kusel, Michael Serralha, Niamh Troy, Barbara J. Holt, Belinda J. Hales, Michael L. Walker, Elysia Hollams, Yury A. Bochkov, Kristine Grindle, Sebastian L. Johnston, James E. Gern, Peter D. Sly, Patrick G. Holt, Kathryn E. Holt, Michael Inouye

Research output: Contribution to journalArticleResearchpeer-review

401 Citations (Scopus)

Abstract

The nasopharynx (NP) is a reservoir for microbes associated with acute respiratory infections (ARIs). Lung inflammation resulting from ARIs during infancy is linked to asthma development. We examined the NP microbiome during the critical first year of life in a prospective cohort of 234 children, capturing both the viral and bacterial communities and documenting all incidents of ARIs. Most infants were initially colonized with Staphylococcus or Corynebacterium before stable colonization with Alloiococcus or Moraxella. Transient incursions of Streptococcus, Moraxella, or Haemophilus marked virus-associated ARIs. Our data identify the NP microbiome as a determinant for infection spread to the lower airways, severity of accompanying inflammatory symptoms, and risk for future asthma development. Early asymptomatic colonization with Streptococcus was a strong asthma predictor, and antibiotic usage disrupted asymptomatic colonization patterns. In the absence of effective anti-viral therapies, targeting pathogenic bacteria within the NP microbiome could represent a prophylactic approach to asthma.

Original languageEnglish
Pages (from-to)704-715
Number of pages12
JournalCell Host & Microbe
Volume17
Issue number5
DOIs
Publication statusPublished - 13 May 2015
Externally publishedYes

Cite this